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Introduction: The recent interest in exploring clinical relevance of cerebral microbleeds (CMBs) in cerebral amyloid angiopathy1, neurodegenerative diseases2, and 
radiation injury in brain tumors3 has motivated the need for a fast and accurate method for their detection. However, their small size and wide distribution render the 
visual inspection of CMBs on MR images a lengthy task that is highly prone to human error. While several semi-automated CMB detection algorithms have been 
recently published4-7, their detection sensitivity and computation time are still in need of improvement. In this study, we propose a new CMB detection method with 
higher sensitivity and faster computation. The method utilizes the 2D fast radial symmetry transform (FRST) to initially detect nearly all possible putative CMBs. 
Falsely identified CMBs are subsequently eliminated by examining geometric features measured after performing 3D region growing on the potential CMB candidates. 
The method is designed to identify CMBs on minimum intensity projected susceptibility-weighted MR images (mIP SWI) that have increased sensitivity to CMBs over 
magnitude images or unprocessed SWI images.  

Materials and methods:  Fifteen patients with CMBs induced by radiation treatment for resected gliomas 
were retrospectively selected to evaluate the performance of the proposed method. T2*-weighted MR 
images of the patients were acquired on a GE 3T scanner (GE Healthcare, Waukesha, WI) using a 3D 
spoiled gradient echo sequence with TE/TR=28/56ms, FA=20°, a resolution of 0.5x0.5 x2mm and 40 slices. 
Standard SWI post-processing techniques8-9 were applied, and the skull and background were removed from 
reconstructed images by utilizing FSL’s brain extraction tool. Images were then normalized to an intensity 
range of 0~255 and minimum intensity projected through 4 slices (8mm) with an overlap of 3 slices. CMBs 
were counted independently by two raters (CPH and JML), and discrepancies were resolved by consensus 
review. To construct a ground truth that comprises CMBs identified not only by visual inspection but also 
by automated detection, the raters initially counted CMBs using the proposed algorithm with parameters set 
for high sensitivity but low specificity, then distinguished true CMBs from false-positive CMBs and 
additionally searched for true CMBs missed by the algorithm.  

An overall scheme of our detection algorithm is shown in Fig.1. The first step in our detection 
algorithm was to use the gradient-based transform FRST to highlight circular features on images. The 
parameters of the FRST were empirically selected such that in this initial step the transform would identify 
the greatest possible number of true CMBs, regardless of the number of false positives. Pixels that had an 
absolute transform value |S| above 170 were directly identified as CMB candidates, while pixels with 
smaller |S| needed to undergo subsequence steps that maximized the sensitivity to low contrast CMBs while 
greatly reducing the number of false positives. False positive reduction begins with screening the FRST 
output with a vessel mask, which is also generated using the FRST by computing the orientation projection 
map O at radius of 1. The map is then used to create a binary mask in which a pixel value is 1 if its value on 
O decreased by at least one unit from its initial value. The mask highlights vessels and the edges of brain, 
regions where CMB mimics are typically found. In the next step, 3D locally connected regions are created 
from the pixels that passed the vessel mask screening, and 3D region growing is performed thereafter to 
grow each local region to its full extent in order to quantify 2D geometrical features of area, circularity and 
centroid.  These features are preferred over 3D features such as volume and sphericity, which are distorted 
after mIP processing. Threshholds of these features were empirically chosen based on prior information of 
targeted CMBs, and were used to construct classifiers to distinguish true CMBs from false positives. The 
outputs from the classifiers were considered CMB candidates and subjected to visual inspection. 

Results: A total of 420 true CMBs (mean diameter: 1.25mm 
or 2.05 pixels) were identified from 15 patients, of which 
371 were correctly detected by our algorithm, resulting in a 
sensitivity of 88.3%. The initial detection using the FRST 
identified 4750 potential CMB candidates, 92% of which 
were false positives. If the vessel mask had not been used, 
the number of false positives would have been 6 times as 
large. After region growing, 83.7% of these false positives 
were eliminated with a final average of 47.4 false CMBs 
identified per patient (range 23~64). The computation time 
of the algorithm was only 1 minute per patient using one 
core of a Linux workstation with 8 GB of RAM. 

Discussion and Conclusions: Achieving high sensitivity 
was the top priority in designing our algorithm，because 
visual inspection to remove false positives is far easier than 
identifying CMBs missed by the detection algorithm. Our 
algorithm achieved the highest sensitivity (88.3%) when 
compared to previous methods4-7, with the next best5 having 
a sensitivity of 81.7%. Moreover, our elevated sensitivity 
was achieved without compromising computation speed, with a processing time of 1 minute compared to times of 1 hour reported by others5-6. In terms of specificity, 
our algorithm produced more false positives (47.4 vs. 18.7 per patient) than the one proposed by Kuijf et al6. However, the latter used gray/white matter mask to remove 
confounding brain structures, which requires additional time for image registration and segmentation. Our CMBs also spanned a smaller number of pixels (average 
diameter: 2.05 vs. 2.28 pixels) than in Kuijf et al, which posed a greater challenge. As a result, we modified the FRST transform to specifically detect smaller, lower 
contrast radiation-induced CMBs and used it to generate a vessel mask that greatly reduced the number of false positives in the initial detection. Although the method 
was evaluated for CMBs arising in the setting of prior radiation therapy for gliomas, its performance should also make it an excellent method for detection of CMBs 
associated with other neurologic disorders 
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Figure 1.  Schematic diagram for the proposed CMB 
detection algorithm and selected optimized parameters. 

Figure 2.  Representative examples of CMBs detected by our algorithm. The center of 5 CMBs 
(circles) and 1 false positive (arrow) from a vessel on mIP SWI image (a) are highlighted on the FRST 
map (b). After 3D region growing and geometric feature examination, all true CMBs were identified 
and the false positive was eliminated because of the linear shape of its grown region (c). One true CMB 
(dashed circle) was directly identified because its |S|>170, and  did not undergo subsequent analysis. 
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