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Introduction. A rapid drop in the water apparent diffusion coefficient (ADC) in ischemic brain tissue is a well-known phenomenon [1].
Biophysical parameters that could affect water ADC include: (i) trans-membrane water exchange rates/membrane permeability, (ii) glial
and neuronal cell-type-specific intracellular viscosities, (iii) extracellular tortuosity and fluid viscosity, (iv) intracellular and extracellular
volume fractions, (v) intracellular restrictions/hindrances imposed by tissue microarchitecture (e.g., neurite beading), and (vi)
temperature. Recently, neurite beading has been hypothesized to make a significant contribution to the ADC changes observed in
stroke [2]. In the current work, the pre- and post-ischemic diffusion characteristics of the intraneuronal metabolite N-acetylaspartate
(NAA) are described in terms of a biophysical model that takes into account contributions from parameters ii and v listed above.
Methods. All protocols were approved by the Washington University Animal Studies Committee. Female Sprague-Dawley rats aged 10-12
weeks were used in this study. Animals were anesthetized with 1.75% isofluorane in O, and immobilized in a stereotactic head holder. Brain
temperature was varied by blowing warm air into the magnet bore and adjustment of water circulating through a pad placed underneath the
animal. MR measurements were performed using a 4.7-T Agilent/Varian DirectDrive™ small-animal imaging system. A diffusion-weighted
PRESS sequence (TR =2 s, TE: = 144ms, 32 averages, 16 b values, b < 20 ms/um?, voxel size = 6 x 6 x 6 mm?®) employing half-sine-shaped
diffusion gradient waveforms was used for measurements at a 50 ms diffusion time. Diffusion behavior was investigated at shorter diffusion
times, from 1.5 to 3.75 ms using an oscillating gradient version of the DW-PRESS sequence. The rather large spectroscopy voxel consists
primarily of gray matter wherein the macroscopically-averaged orientation of cylindrical cellular processes is random [3]. Water-suppression
was not employed and individual FIDs were phase and frequency aligned before co-addition to correct for possible shifts due to slight head
motions. Global cerebral ischemia was induced in-magnet by injection of a lethal dose of Euthasol via i.p. catheter.

Data Modeling. The resulting time-domain diffusion-weighted MRS data were modeled using Bayesian signal analysis software
(http://bayesiananalysis.wustl.edu/index.html) to estimate amplitudes and frequencies of H,O and the prominent 'H metabolite resonances--
NAA, Criot, Chowt. Brain temperature was estimated based upon the chemical shifts of water and these metabolites [4]. Metabolite diffusion-
attenuation data with tqir = 50ms were modeled according to the 3-D cylinder model in Eqn. [1] (see Ref [5]). Relevant parameters include D,
(the apparent diffusion coefficient perpendicular to the cylinder axis), Dy (the “free” diffusion coefficient down the cylinder axis), and a coefficient
B that accounts for diffusion kurtosis down the cylinder axis. The symbol ®(x) denotes the error function of the argument x. To provide a basis
for comparison between our results and the significant body of literature that has investigated pre- and post-ischemic metabolite diffusion at b <
3 ms/um?, the low b-value subset of data points was fit as a single exponential decay, described by an ADC. An alternate approach, using the
short-diffusion-time data (tai < 2.629 ms), was employed to estimate metabolite free diffusion coefficients from diffusion-time-dependence of the
ADC. In this treatment, porous media theory [6,7] was applied according to Eqn. [2], wherein S/V is the pore surface to volume ratio and
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from the biophysical model of Eqn. [1]. DmHeo = 0.89 um“/ms pre-ischemia, which decreases to 0.57 umz/ms post-ischemia.
Discussion/Conclusions. The estimated diffusion parameters for the intraneuronal metabolite NAA suggest an ~ 19% increase in
neuronal intracellular viscosity post-ischemia. The modest increase in the NAA-diffusion kurtosis term is consistent with neurite
beading [5] (known to occur in the neuronal dendritic tree in brain ischemia [9]). Neither the post-ischemia increase in neuronal
intracellular viscosity nor the modest increase in the NAA-diffusion kurtosis term appears to be of sufficient magnitude to serve as the
dominant underlying biophysical genesis of the 36% decrease in water diffusion (Dm,H20) post-ischemia.
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