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Introduction.  A rapid drop in the water apparent diffusion coefficient (ADC) in ischemic brain tissue is a well-known phenomenon [1].  
Biophysical parameters that could affect water ADC include: (i) trans-membrane water exchange rates/membrane permeability, (ii) glial 
and neuronal cell-type-specific intracellular viscosities, (iii) extracellular tortuosity and fluid viscosity, (iv) intracellular and extracellular 
volume fractions, (v) intracellular restrictions/hindrances imposed by tissue microarchitecture (e.g., neurite beading), and (vi) 
temperature.  Recently, neurite beading has been hypothesized to make a significant contribution to the ADC changes observed in 
stroke [2].  In the current work, the pre- and post-ischemic diffusion characteristics of the intraneuronal metabolite N-acetylaspartate 
(NAA) are described in terms of a biophysical model that takes into account contributions from parameters ii and v listed above. 
Methods.  All protocols were approved by the Washington University Animal Studies Committee.  Female Sprague-Dawley rats aged 10-12 
weeks were used in this study.  Animals were anesthetized with 1.75% isofluorane in O2 and immobilized in a stereotactic head holder.  Brain 
temperature was varied by blowing warm air into the magnet bore and adjustment of water circulating through a pad placed underneath the 
animal.  MR measurements were performed using a 4.7-T Agilent/Varian DirectDriveTM small-animal imaging system.  A diffusion-weighted 
PRESS sequence (TR = 2 s, TEtot = 144ms, 32 averages, 16 b values, b < 20 ms/μm2, voxel size = 6 × 6 × 6 mm3) employing half-sine-shaped 
diffusion gradient waveforms was used for measurements at a 50 ms diffusion time.  Diffusion behavior was investigated at shorter diffusion 
times, from 1.5 to 3.75 ms using an oscillating gradient version of the DW-PRESS sequence.  The rather large spectroscopy voxel consists 
primarily of gray matter wherein the macroscopically-averaged orientation of cylindrical cellular processes is random [3].  Water-suppression 
was not employed and individual FIDs were phase and frequency aligned before co-addition to correct for possible shifts due to slight head 
motions.  Global cerebral ischemia was induced in-magnet by injection of a lethal dose of Euthasol via i.p. catheter.     
Data Modeling.  The resulting time-domain diffusion-weighted MRS data were modeled using Bayesian signal analysis software 
(http://bayesiananalysis.wustl.edu/index.html) to estimate amplitudes and frequencies of H2O and the prominent 1H metabolite resonances--
NAA, Crtot, Chotot.  Brain temperature was estimated based upon the chemical shifts of water and these metabolites [4].  Metabolite diffusion-
attenuation data with tdiff = 50ms were modeled according to the 3-D cylinder model in Eqn. [1] (see Ref [5]).  Relevant parameters include D⊥ 
(the apparent diffusion coefficient perpendicular to the cylinder axis), D|| (the “free” diffusion coefficient down the cylinder axis), and a coefficient 
β that accounts for diffusion kurtosis down the cylinder axis.  The symbol Φ(x) denotes the error function of the argument x.  To provide a basis 
for comparison between our results and the significant body of literature that has investigated pre- and post-ischemic metabolite diffusion at b ≤ 
3 ms/μm2, the low b-value subset of data points was fit as a single exponential decay, described by an ADC.  An alternate approach, using the 
short-diffusion-time data (tdiff ≤ 2.629 ms), was employed to estimate metabolite free diffusion coefficients from diffusion-time-dependence of the 
ADC.  In this treatment, porous media theory [6,7] was applied according to Eqn. [2], wherein S/V is the pore surface to volume ratio and  
c′ ~ 1.93 is a first-order correction term to account for the  
finite duration of the sine-wave oscillating gradient [7,8].   
For water diffusion data (tdiff = 50 ms), a statistical  
model was employed to estimate the most probable  
apparent diffusion coefficient, Dm, fit to a truncated  
Gaussian distribution of ADCs [9]. 
Results. NAA pre- and post-ischemia group- 
averaged (mean ± sd) diffusion-attenuation data are  
presented in Fig. 1 for the 50 ms diffusion time.   
Bayesian modeling according to Eqn. [1] produces  
estimates for pre-ischemia diffusion parameters of  
D|| = 0.38 ± 0.02 μm2/ms, D⊥ = 0.02 ± 0.01 μm2/ms,  
and a kurtosis parameter, β of essentially zero  
(0.02 ± 0.03).  Post-ischemia, D|| decreases by ~ 16%  
to 0.32 ± 0.02 μm2/ms while β increases to 0.06 ± 0.03.   
D⊥ is essentially unchanged at 0.01 ± 0.01 μm2/ms.   
Treatment of the in vivo diffusion-time-dependent data  
according to porous media theory (Eqn. [2]) yields an  
estimated free diffusion coefficient of 0.36 ± 0.05 μm2/ms  
for NAA, in remarkable agreement to D|| estimated 
from the biophysical model of Eqn. [1].  Dm,H2O = 0.89 μm2/ms pre-ischemia, which decreases to 0.57 μm2/ms post-ischemia.   
Discussion/Conclusions.  The estimated diffusion parameters for the intraneuronal metabolite NAA suggest an ~ 19% increase in 
neuronal intracellular viscosity post-ischemia.  The modest increase in the NAA-diffusion kurtosis term is consistent with neurite 
beading [5] (known to occur in the neuronal dendritic tree in brain ischemia [9]). Neither the post-ischemia increase in neuronal 
intracellular viscosity nor the modest increase in the NAA-diffusion kurtosis term appears to be of sufficient magnitude to serve as the 
dominant underlying biophysical genesis of the 36% decrease in water diffusion (Dm,H2O) post-ischemia. 
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Eqn. [1] 

Eqn. [2] 

tdiff = 2.629 ms 
ADCNAA(37°C) = 0.176 μm2/ms 

Figure 1.  Semi-log plot of group-averaged 
NAA diffusion data for TNMR in the range from 
36 – 38 °C.  Inset: Fits of b < 3 ms/μm2 data to 
S(b) = So·e

-b•ADC yield a pre-ischemia ADC for 
NAA of 0.122 ± 0.004 μm2/ms vs. 0.097 ± 
0.003 μm2/ms post-ischemia, a 20% decrease. 

Figure 2.  Treatment of the diffusion-time-
dependent ADC of NAA according to Eqn. [2].  
Inset: Measurements at each diffusion time were 
measured at a range of brain temperatures to 
provide a best estimate for ADC(tdiff,37°C) used in 
the fit shown in the main figure panel. 
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