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Purpose Direct Fluorine-19 (19F) imaging of anesthesia induced by Sevoflurane (C4H3F7O) will provide important information about the pharmacokinetics of 
inhalational agents such as drug delivery, cortical drug distribution, and molecular drug-brain interaction. Together with the pharmacology studies1,2, it may provide the 
whole picture of  the neuronal mechanisms of general anesthesia. However, the extremely low cortical concentrations of Sevoflurane at clinically-relevant levels make 
in-vivo 19F imaging of Sevoflurane cortical distributions in humans very challenging3,4. With the aid of recent advances in imaging, this study aims to assess the 
sensitivity of 19F imaging in detecting cerebral Sevoflurane concentrations in humans during 0.5MAC anesthesia, to measure the spatial distribution of Sevoflurane 
during anesthesia, and to investigate the pharmacokinetics of Sevoflurane based on MRI data. Our preliminary results provide new insights of cortical concentrations, 
cortical distribution, and the delivery of Sevoflurane at clinically-relevant doses. 
 Methods 1H/19F imaging was performed on Siemens TimTrio 3T with a 1H/19F dual-tuned CP head probe (Stark Contrast). Six consenting (ASA I healthy) subjects 
have been recruited. 19F imaging data were collected with a TrueFisp sequence:  TR=3.38ms; TE=1.68ms; α=56°; In-place resolution=12.5x12.5mm2; Slice 
thickness=15mm; Inter-slice spacing=1.5mm; In-plane matrix size=40x40; and Slices=8. Advanced system adjustments and shimming were performed; RF frequency 
for 19F was set at ~150.09ppm manually, based on the system adjustment results; and the bandwidth was set to avoid the chemical shift artifacts from the single non-
magnetic equivalent Fluorine nucleus that generates a small peak at 69.82ppm. Three experiments were performed: Phantom control (Exp1):  1H and 19F images of 
water and Sevoflurane (0.2mM in pure Ethanol) phantoms were collected (Fig 1); the purpose of this experiment was to demonstrate the water signal from the water 
phantom was not picked up during 19F imaging. Human awake condition control (Exp2): 19F imaging was performed in 4 subjects for the awake condition (without 
Sevoflurane delivery) while 2 Sevoflurane samples, 0.2mM and 5mM in pure Ethanol, were placed near the temples (Fig 2); the purpose of this experiment was to 
demonstrate during 19F imaging there were no confounding signals being picked up in the brain and the noise level in the brain region was the same as that in the 
background. In-vivo 19F imaging in subjects (Exp3): 19F image data were collected in 5 subjects (one excluded due to motion) to demonstrate the changes in image 
intensity indeed reflected changes in local Sevoflurane levels during 0.5MAC Sevoflurane anesthesia in the regions of interest. 1H brain anatomical images were 
collected to facilitate multi-subject integration for group analyses using BioImageSuite (Fig 3 & 4). 
 Results Exp1 showed for 19F imaging (Fig 1, bottom row) there was no significant difference between the observed image intensity values inside the water phantom 
region (14.9) and the background (15.2); the intensity for the Sevoflurane phantoms was 166.5. During 1H imaging of phantoms, the images for the Sevoflurane 
phantoms were blurred because of the chemical shifts of multiple Ethanol 1H peaks (Fig 1, top row). Group analyses of Exp2 showed for 19F imaging of subjects for the 
awake condition (Fig 2), there was no significant difference in image intensity between the head region (15.5±4.8) and the background (16.1±5); the maximum image 
intensity for the 5mM sample exceeded 4095 and for the 0.2mM sample it was 126.6±13.3, which was lower than expected maybe because of the voxel size and partial 
volume effect. Compared to the results from Exp2, group analyses of Exp3 showed, during 0.5MAC Sevoflurane anesthesia, the image signal intensity within the brain 
increased significantly to 70.5±4.3; Significantly elevated signal of 197.2±21.1 in the scalp ( between the brain and the skin) and of 75.8±12.3 outside the head were 
observed (Fig 3). Fig 4 shows the t-maps (t>8) from the group analysis of Exp3. 
Discussion The 19F signal intensity inside the brain was very stable across subjects, when normalized; the changes in the brain became most significant (Fig 4). 
Together with the control experiments, the t-maps show the observed increased signal in the brain during 19F imaging of anesthesia was indeed induced by Sevoflurane 
inhaled. The scalp had the highest 19F signal due to the high affinity of Sevoflurane to the fatty tissue5. One interesting observation is, Sevoflurane vapor was detected 
and the level was likely higher than in the brain. Our speculation is, since there is hardly any Sevoflurane affinity to the brain tissues (GM/WM), in order to keep certain 
level in the brain, a partial pressure gradient must build up from the respiratory gas, alveolar, blood, BBB, to the brain, which is consistent with the observation of the 
quick recovery from Sevoflurane anesthesia. That also indicates BBB might play an important role in limiting the transfer of Sevoflurane into the brain. Previous in-
vitro/animal studies showed clinically relevant concentrations of most commonly-used inhaled anesthetics were in the range of 0.2 to 0.5mM3,4. In this study 0.2mM 
Sevoflurane in pure Ethanol was examined. Based on our measurements of T2 for the 0.2mM phantom and the brain, which were 3.4ms and 2.1ms, respectively, the T2-
corrected Sevoflurane concentration in the brain at 0.5MAC anesthesia was ~0.11mM, which is much lower than reported in the literature3,4, by assuming similar T1. In 
the scalp/fatty tissue it was ~0.32mM. 
Conclusion We have successfully demonstrated in-vivo detecting regional Sevoflurane with a 1H/19F dual-tuned CP 
head coil during anesthesia at 0.5MAC. Our results not only support the observations from previous animal studies, 
but have provided new insight into the delivery of this agent. Appreciation of the spatial distribution of this agent in 
the human brain becomes possible as more subjects are recruited. 
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Fig 1. 1H (top row) and 19F (bottom row) images 
of water and 0.2mM Sevoflurane phantoms. The 
Sevoflurane phantoms were placed on the top of 
a water bottle. The scan time was ~30min for 19F. 

 
Fig 2. 19F images from one subject during the 
awake condition. 5mM and 0.2mM Sevoflurane 
samples were placed near the subject’s temples. 
The scan time was ~30min. 

Fig 3. Group mean of the Sevoflurane signals in the 
head. 

Fig 4. T-maps of Sevoflurane at 0.5MAC (threshold t>8). 
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