CONCURRENT MAGNETIC FIELD MONITORING OF EPI TIME SERIES: CHARACTERIZING ENCODING FIELD AND IMAGE FLUCTUATIONS USING PRINCIPAL COMPONENT ANALYSIS

Saskia Klein¹, Lars Kasper¹, Johanna Vannesjo¹, Maximilian Häberlin¹, Simon Gross¹, Benjamin Dietrich¹, and Klaas Paul Prüssmann¹ ¹Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland

Introduction:

In fMRI, stimulus-correlated changes in voxel time series are analyzed to infer on activation patterns. Changes in image intensity are induced by signal fluctuations, e.g. related to the brain metabolism (BOLD). They can also be caused by gradient system instabilities and drifts, thus leading to confounds in time series analyses.

We use concurrent magnetic field monitoring to investigate EPI trajectory and B₀-field fluctuations on large timescales and the effects of these fluctuations on image reconstruction. First, we perform a Principal Component Analysis (PCA) to disentangle systematic B_0 -field and trajectory fluctuations, which could be C_{μ} used for calibration, from *random* fluctuations and quantify their proportion. Second, we apply PCA on the reconstructed images to detect typical image fluctuations induced by trajectory variability.

Materials and Methods:

We acquired 9 sets of EPI data on 3 different days following the course of a typical fMRI protocol (Fig. 2). Each session contained 400 dynamics (2.5 mm isotropic resolution, TR 3 s, readout duration 41.1 ms, 10 axial slices) and lasted 20 minutes. Phantom data was acquired from a CuSO₄-doped water sphere (15 cm diameter) on a Philips Achieva 3 T system with an 8-channel head coil and a concurrent magnetic field Figure 1: Evolution monitoring setup (12-channel T/R ¹⁹F NMR probes) [1]. The probe phases measured with this setup were readouts (20 min). (A) B₀-field evolution. (B) Mean k₀ (black) ± the standard fitted to a spatial model of 2^{nd} order spherical harmonics. The 0^{th} order phase coefficient k_0 corresponds to the range of the fluctuations between 2 consecutive dynamics. (C) k-space B_0 -field modulation. The 1st order phase coefficients k_x and k_y are the k-space trajectory. We used these trajectory in measurement direction. (D) Mean k_x (black) \pm the standard measured phase coefficients in an iterative, gridding-based image reconstruction [2,3]. Table 1 shows the deviation of the noise of the monitoring setup (dotted black), which is in the different image reconstruction schemes that were used to determine the influences of k₀- and k_{xy} -fluctuations on the reconstructed images.

Key contributions to the observed trajectory and image Reconstruction Schemes Coll data

fluctuations were characterized using Principal Component^k, fluctuations set 1...set 9 mean k₀ of Analysis (PCA): PCA computes a new set of basis vectors (Principal Components, PCs) along dimensions of high variance in the data [4]. The PCs are ordered according to the amount of variance they explain. We computed the PCs of the phase coefficients k₀ and k_{xy} on all data sets, where each PC represents a characteristic modulation of the readout time course. The PCA of the reconstructed images was performed individually for each A PCA: Phase Coefficients day, and yielded PCs in image domain, separated for influences of k₀ and k_{xy}. To detect correspondences between trajectory and image PCs we computed the projection of each PC over all 3600 dynamics. This projection visualizes the change of a certain PC contribution over dynamics, and thus provides a measure of the **R** fluctuation patterns over time.

Results:

The sensitivity of the field monitoring setup is sufficient to detect fluctuations in k₀ and k_x, the k-space trajectory in measurement direction (Fig. 1). Fluctuations in k_v were small and in the order of the setup sensitivity. Using this concurrent monitoring data for image reconstruction, a mean standard deviation (STD) of 0.3% over all images was observed, attributable not to encoding field fluctuations, but most likely caused by signal fluctuations, e.g. flip angle or receiver gain instabilities. Reconstructing the same coil data with incomplete Figure 3: PCA of B₀-field and corresponding image fluctuations. (A) monitoring information (s. Table 1) yielded a considerable increase in image fluctuations: Neglecting the Bo-field fluctuations resulted in a 4 times as high mean STD, whereas ignoring the k_x/k_y-fluctuations led to a 1.33 times as high mean STD.

a downwards shift of about one pixel in one session. The mean STD of In the PCA, we found very typical fluctuations in the B0-field, the reconstructed images is 1.2 % (max. STD: 34.2 %). The projection the trajectory and the corresponding images over several days. of PC 1 shows correspondence to the projection of the PC 1 of the corresponded to phase coefficient PCs: For k₀, the correlation [4] Pearson, K, 1901 Phil. Mag. S. 6, p.559-572

A Phase Coefficient ko - Bo-field Evolution

Field Probe Noise in k

Field Probe Noise in k

coefficients during

400

в

the measured

influence the image. The mean STD of the images is 0.4 % (max. STD: 2.2 %). The projection of PC 1 shows correspondence to the projection

About 81 % (k_0) and 65 % (k_{xy}) of the image fluctuations could be attributed to image PCs whose systematic evolution **References** [1] Barnet et al. 200;Proc15SMRM.10, p.216; [2] Barnet et al. 2008;MRM.60; [3] Pruesmann et al. 2001;MRM.46 of PC 3 of the kx-trajectory. The correlation coefficient of the

between the projections of PC 1 of the phase coefficient and PC 1 of the images was very strong and significant (0.97, p<1e-16) (Fig. 3). The 1st PC of k₀ models a linear drift, and correspondingly, the 1st 3 image PCs model a downward shift of the object of about 1 pixel per session. For phase coefficient k_x we found a correspondence between an asymmetric widening (PC 3) in the trajectory and the typical EPI-N/2-ghost (PC 1) with a strong and significant (0.89, p<1e-16) correlation between their projections (Fig. 4).

Discussion:

We detected characteristic EPI trajectory fluctuations and B₀-modulations over several days and could identify corresponding image artifacts using comparative PCAs. We saw a not necessarily linear relationship between trajectory and image fluctuations, i.e. small variance in the former can lead to major fluctuations in the latter. The Bo-field modulation shows very characteristic properties which mainly reflect thermal drifts. The quantitative evolution of these fluctuations depends on the history of the system and is hard to calibrate for. We found a characteristic k_{xy} fluctuation, which could be calibrated for. As the resulting noise in the images is in the range of the BOLD effect, correcting for these fluctuations for fMRI applications seems highly beneficial.