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INTRODUCTION 
In high resolution functional MRI, it is often desirable to reduce the readout duration to make the acquired data less prone to T2

* susceptibility artifacts at the expense of 
SNR. This can be achieved by undersampling k-space. However, the conventional Fourier transform-based reconstruction method suffers from undersampling artifacts 
such as high-frequency ringing and loss of resolution. Several methods have been proposed to address this problem mainly for dynamic or cardiac MRI, including the 
use of compressed sensing, spatial-spectral support constraint, partial separability, and low-rank constraints [1-3]. This paper proposes a new imaging approach to fMRI 
with under-sampled data by incorporating the generalized series (GS) constraint in the penalized maximum-likelihood framework.  
 
THEORY 
The acquired fMRI signal is conventionally modeled as 
 
 
where ρ(r,t) denotes the desired spatial function at particular time point t, and ξ(r,t) is the modeled measurement noise. We assume that the measured data d(k,t) is 
available over a set of points {km| km∈D, m=1,…, M} that sparsely sample k-space for each time point t. The undersampling rate is then defined as R=N/M, where N is 
the number of samples in the fully-sampled case. According to the GS model [4], a functional image (in 1D) at a certain time point t is represented as 
 
 

 
where Iref(r) is the reference image that contains a priori boundary information and helps to incorporate high spatial resolution features, cl(t) are unknown GS model 
coefficients that are functions of time, Δk represents sampling interval satisfying Nyquist criterion and l∈ℑ ={-L/2,-L/2+1,…,L/2-1}. When no nontrivial a priori 
information is available, that is Iref(r)=1, then (2) reduces to the conventional Fourier series model. While the reference is static, cl(t) provides temporal data adaptation, 
reflecting hemodynamic functional changes over time. Given the signal model (1) and the GS model (2), we then formulate the reconstruction at each time point t as 
solving the following penalized maximum-likelihood optimization problem: 
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where d is the measured data vector, S is the linear matrix operator which defines the data measurement and sampling, Ψ is the matrix operator whose columns are the 

GS basis functions derived from (2), and λ is the regularization parameter. Having estimated coefficients ĉ , one can reconstruct the corresponding functional image 
using (2). The regularization is necessary to stabilize the reconstruction (as opposed to strongly constrain image features as in [5]) because the number of unknown 
coefficients that carry important dynamic temporal information typically is much higher than the number of measured undersampled data points.  
 
METHODS & RESULTS 
We applied the proposed method to BOLD fMRI data on human volunteers. Data was collected with a single-shot variable-density (VD) spiral-out sequence (64×64 
resolution, 30 slices, 128 time frames, FOV = 22 cm, TR=2.04 s, TE=30 ms, 4 mm slice thickness) with full sampling and sparse sampling (undersampling rate R=4). A 
block design consisted of eight “on” and eight “off” blocks, each lasted for 15 sec, resulting in the total duration time of 4 min. On periods consisted of simultaneous 
visual and auditory stimulation: a circular checkerboard of alternating black and white contrast that reversed at 4 Hz and a randomized tone sequence. Figure 1 shows 
time-averaged functional images and activation maps, reconstructed with conventional zero-filling and the proposed GS methods. In the full sampling case both 
methods produced similar reconstructions while in the case of sparse sampling the zero-filling method yielded blurring and artifacts. The GS method suppressed 
substantial ringing and yielded the activation map with higher spatial resolution. To further validate the method, we also acquire fully sampled fMRI EPI data using the 
same sensory task. The data was then masked according to two trajectories, that is VD spiral (R=3.2) and non-uniform EPI (R=3.6) which had 8 center phase encoding 
lines retained and the rest of the k-space was sampled by skipping 4 out of 5 lines as illustrated in Figs. 2 (f) and (g). Results confirmed the ability of the method to 
improve spatial resolution and reduce undersampling artifact such as Nyquist ghost in the case of the non-uniform EPI.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Simulation results: activation maps 
overlayed on the averaged functional images, 
obtained from (a) ground truth; (b) zero-
filling method with the VD spiral; (c) zero-
filling method with the non-uniformly 
sampled EPI; (d) GS method with the VD 
spiral used in (b); (e) GS method with the 
non-uniformly sampled EPI used in (c); (f)  
and (g) illustrate VD spiral and nonuniform 
EPI trajectories used in the experiment. 
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CONCLUSIONS 
A GS approach to sparsely-sampled  fMRI data has been presented. The method exploits 
the GS model in the proposed penalized maximum-likelihood framework to improve 
spatial resolution of functional images and activation maps and reduce undersampling 
artifacts. Experimental results demonstrate the effectiveness of the method.  
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Figure 1. Experimental results with undersampling rate R = 4: averaged 
functional images (top row) and activation maps (bottom row) from (a) 
fully sampled spiral data set with the zero-filling method; (b) same as in 
(a) but with the proposed method; (c) VD spiral data set with the zero-
filling method; (d) same as in (c) but with the proposed method. 
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