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Target audience. Practitioners of quantitative susceptibility mapping; computational imaging scientists using graphical processing units to accelerate algorithms. 
Purpose. Diffusion-weighted (DW) magnetic resonance (MR) images can be used to provide per-voxel geometric models for improved quantitative susceptibility 
mapping (QSM).  The approach studied here, diffusion-guided QSM (dQSM),1 treats the magnetic susceptibility effect of each image voxel as isotropic (spheres2) or 
axial (cylinders3) depending on the fractional anisotropy (FA) in corresponding DW images. The computation of the matrix formulation of the problem is prohibitively 
expensive on central processing unit (CPU) cores. Acceleration of the algorithm by utilizing graphics processing unit (GPU) cores is necessary to achieve image 
computation times practical for research use today, and for clinical application in the near future. 
Methods. Formal problem statement. In dQSM, , where γ is the gyromagnetic ratio of water, TE is echo time and ϕ is phase in the (complex) T2* gradient-echo (GRE) image.1 The susceptibility map, Δχ, is related to ΔB according to , where  for spherically-modeled voxels (FA < 0.2) and  for cylindrically-modeled voxels (FA ≥ 0.2). Δχ is solved by minimising 

 where  is the matrix-vector representation of  and L is a second-order derivative. 
Minimisation on the GPU. The Landweber Iteration (LI) is used to compute the minimisation. The LI corresponds to an interact kernel,4 predisposing it to an efficient 
vectorised implementation. The matrix A is extremely large, of the order 1 terabyte (TB) for small animal brain imaging and 10-20 TB for human brain imaging. 
Ordinarily this would necessitate implementation on a large-memory supercomputer.  However, the critical observation in this work is that A can be computed on-
demand from a relatively small input data set (< 10-100 MB), and the LI solution for dQSM imaging is therefore feasible for adaptation to the GPU. Single-precision 
calculations are sufficient (given the typical dynamic range of MR imaging data), and memory access patterns can be 
arranged to be entirely sequential, thus a highly-efficient GPU implementation is possible. We have implemented a 
vectorised version of the LI solution in OpenCL, including provision for multi-GPU deployment, with the demarcation 
between fine and coarse parallelism defined by the existing code targeted to the BlueGene/Q1. Despite its relative 
immaturity compared to NVIDIA's CUDA framework, OpenCL offers the same capability for acceleration, and operates 
on a wider range of hardware platforms. Our initial GPU implementation took place as follows: (1) analysis of the 
algorithm complexity and memory access patterns to identify loops to be parallelised, and to determine instantaneous 
memory requirements; (2) allocation and initialisation of GPU device memory buffers for the problem elements (A, �B, 
x, ...); and (3) implementation of OpenCL kernels to compute the LI using massive parallelism. The LI computation 
comprises two expensive O(N2) calculations in nested loops. The loop over the output data buffer was vectorised (i.e. 
allocated to parallel threads on the GPU), leaving a single loop within the kernel. This approach minimizes algorithm 
complexity, avoids race conditions in output, and enables maximally-coalesced input memory access.  
Validation and timing. The method to ensure the accuracy of the GPU-based LI solution and improve its performance 
was: (1) comparison of the output susceptibility map Δχ with those from the reference CPU implementation at coincident 
iterations; (2) accurate (instrumented) measurement of execution times (to completion for validation; to 100 iterations for 
reporting and optimisation purposes); and (3) improvement of kernel and driver code by repeated validation and execution 
timing following the application of code optimisations. maps derived from numerical phantom and ex-vivo mouse 
brain data1 were processed with dQSM implemented on: (1) the IBM Blue Gene/Q supercomputer (based on 16-core PowerPC 1.6GHz CPUs); (2) dual-GPU nodes of 
the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) cluster (dual 6-core Intel Westmere 2.66GHz CPUs and 2 NVIDIA Tesla 
M2070 GPUs per node); (3) 7-GPU nodes of the GPU Supercomputer for Theoretical Astrophysics Research (gSTAR) cluster (dual 6-core Westmere 2.66GHz CPUs 
and 7 Tesla M2090 GPUs per node); (4) 2-GPU nodes of the swinSTAR cluster (dual 8-core Intel SandyBridge 2.2GHz CPUs and 1 Tesla K10 dual-GPU per node). 
Results. The reference implementation on the Blue Gene/Q computes the susceptibility map for the mouse brain in 16 hrs using 4096 cores (256 nodes) - 52 seconds 
per iteration (including all overhead); 12 cores of a dual Westmere node compute the map at 640s per iteration; and a single M2070 GPU computes the LI solution at a 
rate of 140s per iteration. Considering realistic deployment configurations, 21 Tesla M2090 GPUs deployed in three high-density servers can compute the susceptibility 
map in just 112 minutes; and 16 Kepler K10 GPUs deployed in 16 low-density servers are projected (based on single K10 timings) to compute the map in 72 minutes. 
Figure 1 shows the scalability of our solution. Figure 2 summarises the measured completion time for a range of realistic hardware configurations. 

Discussion. Diffusion-guided QSM is drastically faster on GPU than CPU.  Contemporary compute 
GPUs such as the Tesla M2070 (K10) deliver speed-ups of order 8-10 (11-14) times over 
contemporary 6-core CPUs such as the Intel Westmere, 50-60 (70-85) times over a single core 
thereof.  Our implementation is demonstrably scalable, i.e. dQSM images can be computed more 
rapidly with more hardware. The dQSM problem is suited to the GPU for the outstanding reason 
that the elements of the matrix A in the LI formulation can be computed on-demand; without this 
property the problem would be intractable on GPUs. Scalability with respect to image size is not 
reported here, however for human imaging, voxel number will be approximately 4-fold more, and 
further acceleration of the computation of dQSM images will be needed to achieve clinically-useful 
post-processing times. The current implementation of the LI is exact - i.e. the susceptibility in each 
voxel affects every other voxel.  By introducing physically reasonable constraints on the spatial 
support of  we expect significant additional acceleration of the algorithm. 

Conclusion. We have dramatically accelerated the dQSM method, to the extent that its use in research imaging facilities is immediately practicable on quite modest 
computational hardware.  Further speed-up of the GPU implementation should be possible, which, together with algorithmic improvements, and the growth in compute 
capability of GPUs, is expected to enable clinically-relevant post-processing times (less than 30 minutes on modest hardware). 
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Figure 1. Measured speed-up (relative to 12 
Westmere 2.66GHz cores) for gSTAR and 
MASSIVE. Solid (dashed) line indicates ideal 
scaling for gSTAR (MASSIVE). 

Figure 2. Problem completion time (hrs) 
for tested hardware configurations. 

16 hrs 

1.1 hrs 

5.3 hrs 

2667.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


