
Fig.2. Vessel phantom: comparison MRI-DART and LSQR+Otsu for 
radial and Cartesian trajectories. Visual results for 50 lines/spokes. 

Fig.3. Brain phantom: quantitative comparison MRI-DART and 
LSQR+Otsu for radial and Cartesian trajectories. Visual results for 
radial sampling with 30 spokes: comparison of reconstructed images 

and differential images with ground truth. 
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TARGET AUDIENCE: Scientists working in the field of MR image reconstruction and processing PURPOSE: Segmentation refers to the classification of 
image pixels into distinct classes, typically based on their grey level. It is usually performed as a post-processing step on an MR magnitude image, which is 
influenced by reconstruction artefacts. In this abstract, we investigate the integration of reconstruction and segmentation into one single procedure. This 

combination is a regularized reconstruction problem where we exploit 
prior knowledge about the discreteness of the grey levels. This research 
area is known as ‘discrete tomography’ and has been successfully 
introduced in CT and electron microscopy. In this abstract, we introduce 
the concept of discrete tomography to MRI and compare its 
effectiveness to a standard reconstruction and segmentation technique. 
METHODS: The Discrete Algebraic Reconstruction Technique 
(DART)1 is an iterative discrete tomography algorithm. It alternates 

between continuous update steps where the reconstruction is considered as an array of complex-valued unknowns, and discretization steps, which incorporate 
prior knowledge about the grey values in the image. The reconstruction problem is modeled by the set of linear equations ࢟ ൌ  represents the Fourier encoding matrix. The LSQR2 algorithm is employed as algebraic reconstruction method ࡭ where ࢟ is the k-space data, ࢞ is the underlying discrete image and ,࢞࡭
(ARM) to solve this linear model. The computationally intensive 
multiplications with ࡭ and כ࡭ are implemented as NUFFT operations on a 
GPU. Fig. 1 depicts a flowchart of MRI-DART. As a starting point, a first 
continuous reconstruction ࢞ሺ଴ሻ is computed using LSQR. Subsequently, a 
number of DART iterations is performed, which consist of following steps: 1. 
Classification + grey level estimation: We propose a novel thresholding 
algorithm, which finds the optimal thresholds ࣎୭୮୲ and grey levels ࣋୭୮୲ by 
solving  argmin࣋࢒ࡾא࣎,࢒ࡾאష૚ || ࢟ െ ࡭ · segሺ࣋, ࣎ሻ||ଶଶ.  2. Termination criterion: 
The algorithm runs for a fixed number of 10 iterations. 3. Identify ‘free’ and 
‘fixed’ pixels: In this step, all pixels are classified into one of two categories: 
fixed or free. The fixed pixels are assumed to have the correct grey level and 
will not be updated in this iteration. Boundary pixels, for which not all 8 
direct neighbour pixels have the same grey level, are added to the set of free 
unknown pixels. This set is augmented with randomly chosen 15% of the 
remaining non-boundary pixels in order to allow for changes in other image 
areas.  4. Apply ARM on free pixels: Since the number of free pixels is 
small compared to the total number of pixels, the number of unknown 
variables in our linear reconstruction problem is vastly reduced, while the 
number of equations remains the same. This increases the amount of 
information available to correctly reconstruct the unknown grey levels. 5. 
Smoothing: After the reconstruction, a Gaussian smoothing filter with a width 
of 1 pixel is applied. This compensates for possible erroneously fixed pixels 
and incorrect grey value estimations. The simulation experiments are based on 
2 phantom images: phantom 1 (256x256 pixels) is a binary image which 
represents blood vessels, while phantom 2 (219x219 pixels) represents a 
human brain consisting of 4 different grey values. We demonstrate the method 
here for radial trajectories (varying number of equiangular spokes) and 
Cartesian trajectories (varying number of phase encoding lines around the 
center of k-space). We compare the performance of DART to a more 
conventional approach where the k-space data is first iteratively reconstructed 
to a ‘continuous’ image using LSQR, after which a separate segmentation 
algorithm (Otsu3) is employed. RESULTS: We consider the reconstruction 
accuracy of DART as a function of the number of phase encoding 
lines/spokes. The relative number of misclassified pixels (rNMP) is employed 
as the accuracy measure, and gives the ratio of the number of misclassified 
pixels to the total number of pixels. Fig. 2 and 3 compare the reconstruction 
performances both quantitatively and visually. DISCUSSION: The results 
show that DART yields more accurate reconstructions for both the radial and 
Cartesian k-space trajectory. This difference is in general more pronounced 
when the radial sampling strategy is used and when a higher degree of undersampling is employed. CONCLUSION: We have introduced the concepts of 
discrete tomography to the MR imaging model. Simulation results show that the combination of reconstruction and segmentation into one algorithm yields 
more accurate results than the alternative LSQR+Otsu segmentation technique. Future work will concentrate on expansion of the model by incorporating non-
Fourier physical effects which corrupt real MRI data. REFERENCES: 1K. J. Batenburg and J. Sijbers, IEEE Trans. Image Processing, 20, 2542-2553 (2011). 
2C. C. Paige and M. A. Saunders, TOMS 8(1), 43-71 (1982). 3N. Otsu, IEEE Trans. Syst. Man Cybern. 9:62-66 (1979). 

Fig.1. Flowchart MRI-DART 

2662.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


