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INTRODUCTION: The reconstruction of MRI data acquired using parallel approaches can be considered as solving a linear system formulated
through the sensitivity encoding (SENSE) approach in the image domain [1]. Under this approach, the system can become ill-conditioned as the
reduction factor increases, and residual aliasing artifacts and noise amplification become more significant. Regularization represents an important
technique to overcome this problem. A well-known regularization method is Tikhonov regularization [2]; however, direct Tikhonov regularization is
computationally demanding, especially for obtaining the optimal regularization parameter [2]. Such a limitation is expected to grow with SENSE
reduction factor. Here, we present a pre-computation-allowable sparse Tikhonov-regularized SENSE MRI reconstruction technique based on QR
decomposition, fast regularization parameter estimation using a new L-curve [4], and sparse matrix representation.

METHOD: Our approach to Tikhonov-regularized SENSE reconstruction consists of “pre-computation” and “reconstruction” steps for the full-FOV
image, x, from the reduced-FOV image, y. The reduced-FOV image is a folded version of the full-FOV image and formulated as y = Ax, where A is
a folding matrix. Considering SNR optimization from [1] and [2], this system can be represented as ¥ = Ax, with whitened observation § =
A~12QHy, whitened folding matrix A = A~1/2QMA, receiver noise covariance matrix ¥ = QAQ¥, and H denotes the transposed complex conjugate.
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From this, the Tikhonov-regularized solution can be written as x* = argmm{”Ax - y|| + A2||L(x — %) I3}, where xq is the prior information of x,

L is the Tikhonov matrix, and A% is a regularization parameter. The analytical Tikhonov-regularized solution in matrix form is x* = V[U#§ +
VOUHx, (Eq 1), where L =1, A = UDV®, T}; = 0;/(0;2 +A2), ®;; = A%/(0;% +A%), and o; denotes the i diagonal elements of D. For the “pre-
computation” step, there are three techniques to reduce the computational burden. 1) QR Decomposition: One major problem of singular value
decomposition (SVD) is its computational cost. Therefore, we estimate smgular values and vectors by two apphcatlons of QR decomposition rather
than a single SVD factorization. Thus we consider the decomposition of A as A = UDRW”= 0DV, where U, D, and V are approximated U, D,
and V; and R is a well-conditioned upper trlangular matrix. Then Eq 1 1s modified to obtain x* = VI'OH§ + V&Ux, (Eq 2), where L =1,
A=U0DV", I}, =56/ (01 + }\2), i = A2/ ( G;° + A2 ) and G; denotes the i™ diagonal elements of D. This was accomplished by modifying the
original framework in [3] to achieve computational cost reduction. 2) Fast Regularization Parameter Estimation Using A New L-curve: From the
traditional L-curve regularization parameter estimation method [5], we estimate the regularization parameter by finding the corner of the L-shape
curve from (|lxy —Xoll3, ||Axy — )7”2 ), where |[x) —%oll3 =30, F2 (u‘ y_ xo) . || Ax — )7”2 =yr.(1- fi)z(ﬁf’?)z and f, =
efficiently, we use (A%, ||x) — Xo|3) to form the L-curve and calculate its curvature [4]. Note, however, that we cannot precisely compute ||x) — Xoll3
during the pre-computation step and thus approximate 07§ as Eipﬂ, where p is a behavior-controlling real number [5]. 3) Sparse Matrix
Representation: The SMT (Sparse Matrix Transformation) has shown performance benefits in reconstruction [6]; however, the computational burden
to sparsify the matrix during the pre-computation step is high. Here, we propose a Matrix Sparsifier (MS) which is an element-wise weighted
sampling method based on the calculated probability of each element. It is computationally efficient and takes advantage of the structure of the
regularized inverse of the block-diagonal matrix A. If we pre-compute H 2 VI'U” and h =2 ®U"x, (described in Eq 2), the reconstruction step
consists of a simple matrix-vector multiplication and vector summation: x* = Hy + h.

To further reduce the reconstruction computational complexity, we sparsify the dense = No regularization (R=3)
matrix H to generate sparse matrix H, further simplifying computation of x*. G
RESULT: Using our proposed methods on 256x256 simulation data obtained from
http://www.nmr.mgh.harvard.edu/~fhlin (3T MPRAGE images obtained with an 8-
channel head coil array), the computational cost for the actual reconstruction is
reduced by 71% when the reduction factor R=3 and by 98% when R=4 (see Table 1),
with good image quality and visible reduction in amplified noise and residual aliasing
artifacts (see Fig 1).

CONCLUSION: We have presented a sparse Tikhonov-regularized SENSE technique
that accelerates image reconstruction through pre-computation and sparsification of the
dense inverse matrix, and significantly reduces residual aliasing artifacts and noise
amplification for ill-posed cases (e.g. when the reduction factor approaches the number
of coils).
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Sparse Tikhonov Reg. (R=3)

S.T. Reg. (R=3) S.T. Reg. (R=4)
5 0.016531 0.019619
HMBE (No Reg. =0.019323) (No Reg. = 0.042852)
Computational
Reduction (%) 71.1 98.3

Table 1. Error and computational reduction Fig 1. Reconstructed images
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