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INTRODUCTION: The reconstruction of MRI data acquired using parallel approaches can be considered as solving a linear system formulated 
through the sensitivity encoding (SENSE) approach in the image domain [1]. Under this approach, the system can become ill-conditioned as the 
reduction factor increases, and residual aliasing artifacts and noise amplification become more significant. Regularization represents an important 
technique to overcome this problem. A well-known regularization method is Tikhonov regularization [2]; however, direct Tikhonov regularization is 
computationally demanding, especially for obtaining the optimal regularization parameter [2]. Such a limitation is expected to grow with SENSE 
reduction factor. Here, we present a pre-computation-allowable sparse Tikhonov-regularized SENSE MRI reconstruction technique based on QR 
decomposition, fast regularization parameter estimation using a new L-curve [4], and sparse matrix representation. 
METHOD: Our approach to Tikhonov-regularized SENSE reconstruction consists of “pre-computation” and “reconstruction” steps for the full-FOV 
image, x, from the reduced-FOV image, y. The reduced-FOV image is a folded version of the full-FOV image and formulated as y ൌ Ax, where A is 
a folding matrix. Considering SNR optimization from [1] and [2], this system can be represented as y෤ ൌ A෩x, with whitened observation y෤ ൌΛିଵ/ଶQுy, whitened folding matrix A෩ ൌ Λିଵ/ଶQுA, receiver noise covariance matrix Ψ ൌ QΛQு, and H denotes the transposed complex conjugate. 

From this, the Tikhonov-regularized solution can be written as x∗ ൌ argmin୶ ሼฮA෩x െ y෤ฮଶଶ ൅ λଶ‖Lሺx െ x଴ሻ‖ଶଶሽ, where x଴ is the prior information of x, 

L is the Tikhonov matrix, and λଶ is a regularization parameter. The analytical Tikhonov-regularized solution in matrix form is x∗ ൌ VΓUுy෤ ൅VΦUுx଴	ሺ۳ܙ	૚ሻ, where L ൌ I, A෩ ൌ UDVு, Γ୧୧ ൌ σ୧/ሺσ୧ଶ ൅ λଶሻ, Φ୧୧ ൌ λଶ/ሺσ୧ଶ ൅ λଶሻ, and σ୧ denotes the ith diagonal elements of D. For the “pre-
computation” step, there are three techniques to reduce the computational burden. 1) QR Decomposition: One major problem of singular value 
decomposition (SVD) is its computational cost. Therefore, we estimate singular values and vectors by two applications of QR decomposition rather 
than a single SVD factorization. Thus we consider the decomposition of A෩ as A෩ ൌ U෡D෡RWு=	U෡D෡V෡ு, where U෡, D෡, and V෡ are approximated U, D, 
and V; and R is a well-conditioned upper triangular matrix. Then ۳ܙ	૚ is modified to obtain x∗ ൌ V෡Γ෠U෡ுy෤ ൅ V෡Φ෡U෡ுx଴	ሺ۳ܙ	૛ሻ, where L ൌ I, A෩ ൌ U෡D෡V෡ு, Γ෠୧୧ ൌ σෝ୧/൫σෝ୧ଶ ൅ λଶ൯, Φ෡୧୧ ൌ λଶ/൫σෝ୧ଶ ൅ λଶ൯, and σෝ୧ denotes the ith diagonal elements of D෡. This was accomplished by modifying the 
original framework in [3] to achieve computational cost reduction. 2) Fast Regularization Parameter Estimation Using A New L-curve: From the 
traditional L-curve regularization parameter estimation method [5], we estimate the regularization parameter by finding the corner of the L-shape 

curve from (‖x஛ െ x଴‖ଶଶ, ฮA෩x஛ െ y෤ฮଶଶ ), where ‖x஛ െ x଴‖ଶଶ ൌ ∑ fመ୧ଶ ቀ୳ෝ౟ಹ୷෥஢ෝ౟మ െ x଴ቁଶ୬୧ୀଵ , ฮA෩x஛ െ y෤ฮଶଶ ൌ ∑ ൫1 െ fመ୧൯ଶ൫uො୧ுy෤൯ଶ୬୧ୀଵ , and fመ୧ ൌ ஢ෝ౟మ஢ෝ౟మା஛మ . More 

efficiently, we use (λଶ, ‖x஛ െ x଴‖ଶଶ) to form the L-curve and calculate its curvature [4]. Note, however, that we cannot precisely compute ‖x஛ െ x଴‖ଶଶ 
during the pre-computation step and thus approximate uො୧ுy෤ as σෝ୧୮ାଵ, where p is a behavior-controlling real number [5]. 3) Sparse Matrix 
Representation: The SMT (Sparse Matrix Transformation) has shown performance benefits in reconstruction [6]; however, the computational burden 
to sparsify the matrix during the pre-computation step is high. Here, we propose a Matrix Sparsifier (MS) which is an element-wise weighted 
sampling method based on the calculated probability of each element. It is computationally efficient and takes advantage of the structure of the 
regularized inverse of the block-diagonal matrix A. If we pre-compute H ≜ V෡Γ෠U෡ு and h ൌ≜ Φ෡U෡ுx଴ (described in ۳ܙ	૛ሻ, the reconstruction step 
consists of a simple matrix-vector multiplication and vector summation: x∗ ൌ Hy෤ ൅ h. 
To further reduce the reconstruction computational complexity, we sparsify the dense 
matrix H to generate sparse matrix H෡, further simplifying computation of x∗. 
RESULT: Using our proposed methods on 256x256 simulation data obtained from 
http://www.nmr.mgh.harvard.edu/~fhlin (3T MPRAGE images obtained with an 8-
channel head coil array), the computational cost for the actual reconstruction is 
reduced by 71% when the reduction factor R=3 and by 98% when R=4 (see Table 1), 
with good image quality and visible reduction in amplified noise and residual aliasing 
artifacts (see Fig 1). 
CONCLUSION: We have presented a sparse Tikhonov-regularized SENSE technique 
that accelerates image reconstruction through pre-computation and sparsification of the 
dense inverse matrix, and significantly reduces residual aliasing artifacts and noise 
amplification for ill-posed cases (e.g. when the reduction factor approaches the number 
of coils). 
REFERENCE: [1] K. Pruessmann, et al., Magn Reson Med 1999; 42(5):952. [2] F.H. Lin, et al., Magn 
Reson Med 2004; 51(3):559. [3] T. Kitagawa, et al., BIT Num Math 2001; 41(5):1049. [4] M. Rezghu & S. 
Hosseini, et al., Compt and Appl Math 2009; 231(2):914. [5] P. Hansen, Compt Inv Prob in 
Electrocardiology 2001; Ch4;119. [6] J. Speciale, et al., Proc. Intl Soc Mag Reson Med 2011; 19:2871. 

No regularization (R=3) Sparse Tikhonov Reg. (R=3)

  
No regularization (R=4) Sparse Tikhonov Reg. (R=4)

  
Fig 1. Reconstructed images 

 S.T. Reg. (R=3) S.T. Reg. (R=4) 

RMSE 0.016531 
(No Reg. = 0.019323) 

0.019619 
(No Reg. = 0.042852) 

Computational 
Reduction (%) 71.1 98.3 

Table 1. Error and computational reduction 
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