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Introduction: Combination of partially parallel imaging (PPI) and compressed sensing (CS) [1-4] employs complementary properties of the two competitive methods. 
Among them, direct combination approaches [1-2], which jointly consider both CS and PPI constraints, potentially suffer from image artifacts at high acceleration, 
because sparsifying transform are less coherent with sensitivity encoding than Fourier encoding. Then, combination of CS and PPI in a sequential fashion [3-4] was 
recently introduced, demonstrating its feasibility in overcoming the aforementioned problems. In this work, we develop a novel, multi-scale subband weighted PPI 
algorithm, wherein 1) CS is utilized to yield multi-scale sparse solutions, 2) Subbands in each scale are employed to produce multiple de-noised filtered k-spaces, 3) 
Join estimation of PPI convolution kernels and k-spaces are performed, considering both inter-subband correlation and spatial correlation over multiple coils. 
 
Method: A flowchart of the proposed, multi-scale subband weighted PPI algorithm is shown in 
Fig. 1. Variable density (VD) pseudo-random under-sampling pattern, in which data is fully 
acquired in the central k-space while randomly under-sampling in the peripheral k-space, is 
employed to produce sufficient incoherence between the sparsifying and Fourier operators. 1) CS 
optimized sparse solution in multi-scale domain: Missing signals in individual coil k-space are 
estimated by solving the CS optimization problem: ԡݓԡℓభ, .ݏ ݕԡ  .ݐ െ  ௦ܦ ,is the sparsifying transform ߖ ,is the Fourier transform ܨ ,wԡଶଶ  (1), where w denotes wavelet coefficientsכΨܨ௦ܦ
is the sampling operator, and y is the measured data. 2) Generation of subband driven 
multiple de-noised filtered k-spaces: CS optimized sparse solution results in a globally de-
noised k-space: ܺ ൌ  ሺ2ሻ, ܺ is the full reconstructed k-space. An individual subband at  ݓכΨܨ
each scale in the wavelet domain is multiplied by a binary mask (a subband of interest: 1, other 
subbands: 0), producing multiple subband weighted k-spaces with the spectral profiles as shown 
in Fig. 1: ܺ௪ ௗ,௝ ൌ ሺ3ሻ where ܺ௪   ݓௗ,௝ܯכΨܨ ௗ,௝ is the subband weighted k-space depending on 
both directionality and scale (d=HL,LH,HH, j=1,…J), and ܯௗ,௝ is the binary subband mask in 
the wavelet domain. 3) Joint estimation of subband weighted PPI convolution kernel and k-
space: Considering both the globally de-noised k-space and the subband weighted multiple k-
spaces, we calculate PPI convolution kernel during coil calibration as: ݔ௖ሺ݇ሻ ൌ ∑ ௖ᇲݔ ٔ ݃௖ᇲ௖ᇲ ൅∑ ௪ݔ ௖ᇲ ٔ ݄௖ᇲ௖ᇲ  (4) where c  and ܿᇱ  are the coil indices, ݃௖ᇲ  and ݄௖ᇲ  is the convolution 
kernels for the global and the subband driven k-spaces, respectively, and ٔ is the convolution 
operator. As compared to conventional PPI, a major contribution of the proposed method is to 
incorporate both inter-subband correlation and spatial correlation over multiple coils in coil 
calibration. Additionally, it can be interpreted that the first term in Eq. (4) is equivalent to 
conventional convolution in PPI while the second one in Eq. (4) to the generalized high-pass 
filtered convolution in PPI [5-6]. Exploiting the proposed convolution approach, we jointly 
estimate both convolution kernel and k-spaces by solving the following optimization problem: ሼܺ, ሽܩ ൌ ீ,min௫ ݃ݎܽ  ଵଶ ԡܺܩ െ ܺԡଶଶ ൅ ఒభଶ ԡݕ െ ௦ܺԡଶଶܦ ൅ ఒమଶ ԡܦ௡௦ܺܩԡଶଶ   ሺ5ሻ , where ܩ  denotes the 

convolution kernel, ܦ௡௦ is the non-sampling operator, ߣଵ and  ߣଶ is the parameter to control 
data fidelity and non-measured data instead of penalizing fully reconstructed k-space, 
respectively. Solution in Eq.5 is found with respect to two variable, X and ܩ, separately while 
keeping the other one fixed using a standard gradient descent method such as conjugate gradient 
(CG) algorithm. Once the optimal solutions, ܺ and ܩ in (5) is calculated, subband driven 
partial k-space is regenerated and the iteration process is repeated until the error of the 
reconstructed k-space at the two successive iteration steps become negligible. 
 
Results: A brain in vivo data (256x256) is simulated for an 6-channel 
head coil. To emulate under-sampling for the proposed method, the 
fully acquired data are decimated using a factor of 9. For comparison, 
two images are reconstructed using ℓଵ SPIRIT and the proposed 
multi-scale weighted PPI technique. ℓଵ SPIRIT restore image details 
but yields ringing artifacts at the boundary of brain (solid arrow in Fig. 
2a-b). Additionally, low contrast structure is destroyed noises 
propagates over the entire image (Fig. 2c). Compared to ℓଵ SPIRIT, 
the proposed technique successfully eliminates ringing artifact in the 
solid-arrow-pointed region (Fig. 2d-e) and suppresses noises to a 
certain degree, reducing pronounced errors (Fig. 2f). 
Conclusion and Discussion: We proposed an efficient joint 
estimation algorithm of kernel and k-space iteratively considering 
inter-subband correlation as well as multiple coil correlation, 
effectively decoupling CS and PPI with no direct tradeoff of image 
accuracy with noise even at high acceleration factors. Comparison 
with image reconstructed by ℓଵSPIRIT confirms that the proposed 
method is competitive against the existing techniques. 
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