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INTRODUCTION: The problem of reconstructing a high-spatial-temporal-resolution MR image sequence occurs in various MR applications, such as 
interventional imaging, dynamic contrast enhanced imaging, cardiac imaging, where a static reference image can be obtained with relative ease before the whole 
dynamic process. This work addresses the problem by integrating the generalized series (GS) model [1], in which the reference prior is incorporated, with standard 
compressed sensing (CS) [2] and parallel imaging (PI) [3] techniques. The proposed method was validated in a Monte-Carlo study and is shown to provide 
superior imaging quality with decreased g-factor to existing CS- and PI-based reconstruction methods. 

THEORY AND METHOD: In the context of parallel acquisition, the GS model efficiently represents the multi-coil image 

function as a generalized-series expansion [4]:
M/2 1

GS
M/2

( , ) ( ) ( , )
n

n n
n

j j jα ϕ
= −

=−

= ∑ρ r r , where ( )n jα denotes the GS coefficients for 

the j-th coil, M is the number of Nyquist samples at the central k-space and REF( , ) ( , ) exp( 2 )n j j i nϕ π= ⋅ Δ ⋅r ρ r k r
 
are the GS 

basis functions incorporating a set of sensitivity-weighted reference priors. The GS coefficients for all coils can be directly 
jointly estimated by enforcing data consistency at the central k-space (grey rectangle in Fig. 1) with Dg and yg denoting the 

corresponding sampling pattern and acquired data: 
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α D FΦ α y  (1). The GS representation is very 

useful in modeling smooth contrast variations between the reference and target image, while it is less efficient in modeling 
localized discrepancies. To this end, we employ standard CS and PI technique to recover the residual image not captured by 
the GS model. Specifically, we use the SPIRiT [5] method as well as its regularized variant, and the proposed reconstruction 
(GS-SPIRiT-L1) can be formulated as: 
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where y represents the acquired multi-coil k-space data, and x is the k-space data of the residual image. Operator D performs 

selection in the acquired k-space locations, 
1,2
⋅ denotes the mixed L1-L2 norm (i.e., 
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across coils, operator wΨ conducts a sparsifying transformation (i.e., wavelet), μ is a 

pre-determined constant to constrain the energy distribution between the GS representation 
and the residual image. 1λ and 2λ are regularization parameters. The sampling pattern is 

illustrated in Fig. 1. Other data acquisition schemes can also be designed. In Eq. (2), Gresi is 
the self-calibrating operator [5] convolving the k-space data of the residual image with 
appropriate calibration kernels. Deviating from the standard SPIRiT method, the 
calibration kernels are calculated only using the residual k-space data located in the central 
white area shown in Fig. 1. S is a binary mask designed to exclude the inconsistence 
introduced by the residual k-space data in the grey rectangle. It is worth noting that the 
standard SPIRiT and L1-SPIRiT are special cases of the proposed technique if we 
fix GS 0=α and set =S I . The SPIRiT and GS-SPIRiT reconstruction can be implemented 

via lease square (LSQR) algorithm. For the GS-SPIRiT-L1 method, we proposed to use 
an efficient projection over convex sets (POCS) algorithm described in Table 1, where 
operator Dc performs selection in the non-acquired k-space locations. 

RESULTS AND DISCUSSION: The proposed technique was validated via simulated data shown in Fig. 2. The target and reference images (256×256) are 
selected from a nine-image sequence of a variable flip-angle experiment. An eight-channel receive head coil (complex valued) was simulated based on the 
Biot-Savart's law [6]. To evaluate the noise behavior in the 
reconstruction, we conduct a Monte-Carlo study with 100 
complex white Gaussian noise realizations. Regularization 
parameters are elaborately tuned to provide minimum 
reconstruction errors for each method. The LSQR and the POCS 
algorithms are implemented with 30 iterations. After 
reconstruction, the mean error and the empirical g-factor map 
are calculated. As can be seen, the SPIRiT method suffers from 
severe noise amplification and the largest reconstruction error, 
while the GS-SPIRiT method exhibits alleviated noise behavior. 
This is probably because for image content based parallel 
imaging techniques, such as SPIRiT, if a sparser data (the 
residual image in our case) is used to calculate the calibration 
kernel, the increased sparsity enables to lower the g-factor. The 
slightly increased error on the edges of the GS-SPIRiT 
reconstruction is mostly because of the decreased SNR and the 
reduced amount of calibration data. The L1-SPIRiT and the 
proposed GS-SPIRiT-L1 methods both successfully eliminate 
the noise amplification through L1 regularization. However, 
under the simulated conditions here (acceleration factor of 5.8 
and noisy measurements), the proposed method exhibits less 
artifacts and preserves more image details. 

CONCLUSION: By integrating the generalized series model with standard compressed sensing and parallel imaging techniques, the proposed method achieves 
superior reconstruction quality with decreased g-factor to the state-of-art CS-PI based reconstruction methods from under-sampled noisy measurements. 
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Table 1 GS-SPIRiT-L1 POCS Algorithm 

Initialize: estimate (0)
GSα using Eq. (1), calculate (0)

resiG , 
(0) T (0)

GS GS( )= −x D y DFΦ α , 0k =  

Iterate: 1. ( 1) ( ) ( )
resi

k k k+ =x G x , 

2. ( 1) T ( 1) T ( )
c c GS GS( )k k k+ += + −x D D x D y DFΦ α , 

3. ( ) 1 ( 1)
W W

k k− +=α Ψ F x , 

4. ( 1) ( 1) ( ) ( )
GS W GS W[ ; ] JointSoftThresh([ ; ])k k k kμ μ+ +⋅ = ⋅α α α α , 

5. ( 1) T 1 ( 1) T ( 1)
c c W W GS GS( )k k k+ − + += + −x D D FΨ α D y DFΦ α , 

6. update ( 1)
resi

k+G , 1k k= + . 

Until convergence. 

 

Fig. 2. Reconstruction results with a reduction factor of 5.8. Multi-coil images are combined 
with square root of sum of squares. The percentage number is the normalized MSE. 

 

Fig. 1. A uniform Poisson disk 
sampling with a fully sampled 
center (32×32). The grey 
rectangle (12×12) denotes the 
location of the GS coefficients. 
The net reduction factor is 5.8. 
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