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Introduction: SPIRiT [1] is an autocalibrating parallel imaging (PI) method for arbitrary k-space trajectories generalizing GRAPPA [2]. Recently, the 
computational complexity of the calibration operator has been reduced from O(Nc

2)  to O(Nc) (Nc: Number of coils) by extracting coil sensitivity 
maps via eigen decomposition of the interpolation kernel [3,4]. In [3] only the forward operation of the modified kernel has been used in a 
projection over convex sets (POCS) algorithm for Cartesian sampling. However, conjugate gradient (CG) type solvers for non-Cartesian sampling 
also include adjoint besides forward operations. In this work, we reduce the computational complexity for non-Cartesian SPIRiT by incorporating 
the coil sensitivity-based kernel into CG-like reconstruction. Additionally, the two consecutive k-space interpolation steps during the regridding-
gridding operation are approximated by a diagonal matrix multiplication potentially reducing computational costs further.       
Theory: In SPIRiT, the GRAPPA-like k-space interpolation kernel can 
efficiently be implemented in image domain yielding a matrix-vector 
multiplication, ρn(x) = G(x) ρn-1(x), for each pixel at iteration step n. ρn(x) 
denotes the (Ncx1) column vector stacking each coil’s image value at pixel 
position x and G(x) is a (NcxNc) matrix containing the values of the Fourier 
transformed k-space kernel at x. The corresponding image domain operator 
acting on all coil images stacked in vector ρ is then denoted as G. It has 
been shown in [3] that the pixel-wise O(Nc

2) matrix multiplication can be 
reduced to a successive O(Nc) vector-vector and scalar-vector 
multiplication: G(x) ≈ ||c(x)||-2c(x)c(x)H, where c(x) is the coil sensitivity 
vector corresponding to the eigenvector of G(x) with eigenvalue 1. Defining 
the modified operator as C(x) = ||c(x)||-2c(x)c(x)H and C, respectively, we 
see that C(x)H = C(x) and CH = C. With the identity I, the calibration 
consistency and its adjoint operation appearing as (G - I)H (G - I) in CG-like 
reconstruction can then be simplified to (C - I)H (C - I) = -(C - I). 
Following [5] we replace the regridding-gridding operation EHE with the 
encoding matrix E of the data consistency term with Izp

HFHdiag(F0Q)FIzp 
[6], with the zero-padding matrix Izp doubling the image matrix size, the 
unitary discrete Fourier transform (DFT) F, the unnormalized DFT F0, and Q 
as defined in [5]. Instead of calculating Q according to [5], we approximate 
diag(F0Q) by another diagonal matrix K. Similar to [7], K is obtained by 
regridding a constant ones k-space onto the non-Cartesian trajectory followed by gridding back onto the Cartesian grid. Combining the two above 
approaches, the normal ecquation to  solve the SPIRiT image domain minimization problem for ρ, argminρ ||[E

HE + λ2(G - I)H(G - I)]ρ - EHd||2, 
with CG reduces then to: argminρ ||[Izp

HFHKFIzp - λ2(C - I)]ρ - EHd||2, with the arbitrary k-space trajectory d. 
Methods: An artificial 16-channel coil array data set [8] was used to generate a reference multi-coil computer model data set. Complex valued 
white Gaussian noise with independent real and imaginary part was added. 8 virtual channels were then computed using coil array compression 
[8]. The reference data (256x256 matrix) was projected onto undersampled 
spiral and radial k-space trajectories. For both sampling schemes, a fully 
sampled k-space center (30x30) for calibrating G with a (7x7)-kernel was 
calculated via low-rank matrix completion [9]. C was obtained by eigen 
decomposition of G and K via regridding and gridding of a (256x256)-ones-
k-space (Fig.1). CG with 40 iteration steps was then used for 
reconstruction, once with G and E for standard SPIRiT, once with both new 
operators C and K, and once with C and E. To implement E, the NUFFT 
gridder [10] was used.  
Results: Fig. 2 shows reference, direct non-uniform Fourier transformed, 
SPIRiT reconstructed and error images for the simulated spiral and radial 
data. The masked error images depict the equality of using operator G or C 
and E or K. Compared to standard spiral SPIRiT with G and E the saving in 
reconstruction time when using C and K was 43% and 40% with C and 
NUFFT gridder E. For the radials, the corresponding time savings were 35% 
and 49% revealing that the benefit of K depends on the number of 
acquired k-space samples. 
Discussion: A modified coil-sensitivity based calibration operator was 
incorporated into non-Cartesian CG-like SPIRiT. While maintaining image 
quality, significant reduction in reconstruction time has been demonstrated 
for simulated spiral and radial data. In addition, the exchangeability of the 
two consecutive k-space interpolation steps with a diagonal matrix 
multiplication has been shown. Depending on the number of k-space 
samples, reconstruction times on the order of the highly optimized NUFFT 
gridder are achieved.  
References: [1] Lustig M, MRM (64) 2010, [2] Griswold MA, MRM (47) 2002, [3] Lai 
P, ISMRM 2010:345, [4] Lustig M, ISMRM 2011:479, [5] Wajer FTA, ISMRM 2001:767, 
[6] In personal communication with Matthias Seeger (EPFL), [7] Akcakaya M, ISMRM 
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Figure 1 Reconstruction workflow. K is obtained via the geometry of the 
undersampled trajectory. The calibration operator G and C are calculated 
from the center of k-space via low-rank matrix completion and eigen 
decomposition, respectively.  
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Figure 2 Top: Coil-combined reference and direct Fourier transformed 3-fold 
undersampled spirals. Reconstructed and error images are shown for 
standard SPIRiT with operators G and E and for the proposed method using 
operators C and K or C and E. Reconstruction times relative to standard 
SPIRiT (1.0) are also depicted. Bottom: Corresponding illustrations for radial 
data set (R=16). 
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