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Introduction: 
Significant efforts have been made to accelerate data acquisition for fMRI using fast scanning [1-3] and/or parallel imaging [4-5]. Sparse sampling 
offers a new opportunity to further accelerate fMRI [6-8]. In this work, we present a new method to reconstruct fMRI image series from sparsely 
sampled (k,t)-space data. The proposed method combines two modeling constraints: a Partial Separability (PS) constraint [9] exploiting the low-rank 
structures in fMRI image series and a sparsity constraint. Simulations based on experimental finger tapping fMRI data demonstrate accurate 
reconstruction of the gray-scale images and the activation regions from highly undersampled data by the proposed method. 

Proposed Method: 
Model and Formulation: We consider the following data acquisition model 
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where Iq is the qth frame in an fMRI image series, dq(km) denotes its corresponding k-space measurements and nq is assumed to be complex white 
Gaussian noise. After proper discretization, the model in Eq. (1) can be expressed as d = Ω (FsX) + N, where d 1MQC ×∈ contains the data for all the 

frames, Fs
N NC ×∈ is a Fourier encoding matrix, Ω is a (k, t)-space sampling operator, X = [x1,…,xQ] N QC ×∈ contains the image series to be 

reconstructed and N contains noise. Using the PS model, we can represent X as X = UV [10-11], where U N LC ×∈ and V L QC ×∈ are two low-rank 
matrices. Accordingly, we propose to reconstruct X using the following formulation 
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where ( ),Φ U V is a penalty function that promotes the sparsity of X in a certain transform domain. In this work, we choose ( ) 1
,Φ =U V U , where the 

l1-norm here for a matrix is defined as [ ]1 mnmn
=∑A A . This penalty is motivated by the observation that vectors in U (obtained from fully sampled 

images) highly resemble the spatial components from a typical fMRI data analysis (e.g., ICA analysis as reviewed in [12]) and these components are 
usually sparse [13]. 
Algorithm: A specially designed data acquisition scheme, as illustrated in Fig. 1, is used to decouple the joint estimation in Eq. (2) into an efficient 
sequential estimation of V and U [9-11]. The repeatedly sampled phase encodings near the center of k-space (also referred to as navigator signals 
[9-11]) are used to estimate V. Specifically, the navigator signals are stacked in a matrix, to which SVD is applied and the first L right singular 
vectors are selected to form an estimate of V, denoted as Vt. With Vt determined, the original problem in Eq. (2) can be rewritten as 
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which can be solved by a number of computationally efficient algorithms developed in the context of sparse signal recovery. Here, we use an 
algorithm based on additive half-quadratic representation with continuation. Detail of this algorithm can be found in [11].  

Results:  
We evaluated the proposed method using experimental fMRI data acquired on a 3T SIEMENS Skyra scanner with a 16-channel head coil. A periodic 
block design paradigm with a finger tapping task was used. Data was acquired using a 2D EPI sequence with: TR/TE = 2000/27ms, matrix size = 
88×88, and 32 slices. Parallel imaging acquisition with an acceleration factor of two was used and GRAPPA [14] reconstruction was applied. The 
sum-of-squares images were then treated as the reference and used to simulate undersampled data. Fig. 2 shows some representative results from the 
proposed method at an undersampling factor of 5, compared to the fully sampled data. The activation regions detected (using SPM8) are overlaid on 
the corresponding reconstructed images. As can be seen, the results from the proposed method match well with those from the fully sampled data. 

Conclusion: We proposed a new method for accelerating fMRI experiments using sparse sampling of (k, t)-space. The performance of the proposed 
method has been evaluated using retrospective undersampling of fMRI experimental data. The proposed method produced accurate reconstruction of 
both the gray-scale images and the activation maps compared to those from fully sampled data. More fMRI studies will be conducted to determine 
more rigorously the benefits of the proposed method. 
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Fig.1: Illustration of the proposed data acquisition scheme. 
Fig.2: Comparison of the reconstructions and activation maps from the fully sampled 
data with those from the proposed method.

Fully Sampled

Proposed

2620.2620.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


