
Fig.1 Simulation results with a reduction factor of 5. (a) True 
image; (b) CG-SENSE; (c) TV; (d) CORNOL; (e) multiscale 
CORNOL. 
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TARGET AUDIENCE:  Researchers and clinicians interested in ultra-fast MR data acquisition 
PURPOSE: Variable-density spiral (VDS) trajectory gains increasing interest due to its fast kspace traversal speed and nearly incoherent undersampling 
artifacts (1,2) that can be removed by proper nonlinear reconstruction (3,4). However, suppression of some large-scale artifact can conflict with fine-scale image 
structure preservation and thus degrades the image quality. To solve the problem, a multiscale reconstruction based on recently developed CORNOL (coherence 
regularization with a nonlocal operator) (5) was proposed in this study. Multiscale CORNOL decouples artifact suppression and structure preservation by 
iteratively performing CORNOL with different scales of smoothness constraint, so that the aforementioned conflict can be avoided. The simulation and in vivo 
VDS experiment demonstrate that this method can effectively suppress artifacts while preserving image details at high sampling reduction factors. 
METHODS: Unlike most nonlinear reconstruction methods that usually impose only a single-scale smoothness constraint, multiscale CORNOL imposes 

smoothness constraints with different spatial scales. Based on the original CORNOL (5), the cost function of multiscale CORNOL can be formulated as: 
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. Since CORNOL imposes 

smoothness constraint within structures detected by the nonlocal operator (5), the scale of 

its smoothness constraint is determined by the scale of nonlocal operator.  Thus, to impose 

constraint at different scales, multiscale CORNOL uses the following scale-varying 

nonlocal operator: 
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where p(i) and p(j) are patches centered at pixel i 
and j, j is a pixel within the neighborhood of i, Wi is 
the sum of all ijφ . Initially, a large scale h0 is used 
for aliasing artifact suppression. Then, the scale is 
dyadically reduced to ensure structure preservation. 
A Shepp-Logan phantom and an 8-channel phased 
array coil were used for numerical simulation. A 
spin-echo VDS sequence was used to acquire in 
vivo brain images on a Philips 3T scanner (Achieva, 
Philips, Best, The Netherlands) using 8-channel coil 
with: TR = 2500 ms, TE = 80 ms, flip angle = 90°, 
FOV = 220 mm×220 mm, and image matrix = 
256×256, the VDS alpha was set to 3. A reduction 
factor of 5 was used for both experiments. 
RESULTS AND DISCUSSION: Fig. 1 compares 
the VDS sampled phantom simulation results of 
CG-SENSE, Total Variation (TV), CORNOL and 
multiscale CORNOL. The CG-SENSE image 

shows amplified noise and ring artifacts (pointed to by the arrow in Fig. 1(b)). TV removes both ring artifact and noise, but blurs small structures (pointed to by 
the arrow in Fig. 1(c)). Although CORNOL shows sharper structure, it exhibits residual ring artifact (pointed to by the arrows in Fig. 1(d)). In contrast, 
multiscale CORNOL effectively removes ring artifact while preserving the structure well (Fig. 1(e)). Fig. 2 compares the in vivo VDS imaging results. 
CG-SENSE, TV and CORNOL images all show some residual aliasing artifact (pointed to by the arrows in Fig. 2). Besides, TV image is considerably blurred 
(Fig. 2 (c) and (h)). In comparison the multiscale CORNOL image is free of aliasing artifact and shows sharp details that are close to the sum-of-squares image.  
CONCLUSION: A multiscale CORNOL reconstruction was proposed to circumvent the conflict between large-scale artifact suppression and fine-scale 
structure perseveration in nonlinear VDS reconstruction. The numerical simulation and in vivo VDS experiments results demonstrate that this method can 
effectively suppress large-scale artifact without losing image details at high reduction factors. 
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Fig.2: In vivo data reconstruction results with R=5. (a) sum-of-squares image; (b) CG-SENSE; (c) TV; (d)  
CORNOL; (e) multiscale CORNOL; (f), (g), (h), (i) and (j) show the zoomed-in part of (a) ,(b), (c), (d) 
and (e), respectively.
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