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INTRODUCTION: Combining k-space under-sampling with a non-linear compressed sensing (CS) algorithm is useful in magnetic resonance (MR) 
imaging to decrease image acquisition times while retaining resolution1. One CS reconstruction criterion is a sparse transform domain representation. 
The wavelet transform can sparsify images but is not applicable when under-sampling a 4th non-k-space domain, time or frequency. In these domains 
a signal R(t), or its discrete Fourier transform (DFT) R(f) = DFT(R(t)), is a sum of exponentials or Lorentzians respectively. 
PURPOSE: We propose the use of the Gardner transform2,3 (GT) as a sparsification transform for sums of exponentials, Lorentzians, Gaussians, or 
sinc functions. We present GT theory together with simulation results illustrating challenges arising in the practical application of the GT. 
THEORY: Analysing a multi-component exponential decay, R(t) = ∑{ Ai*exp( -t/MTTi ) } using the GT requires determining the solution of the 
deconvolution equation, GG(f) = DFT{ RR(x) } / DFT{ KK(x) }, where RR(x) is obtained by the substitution of t = exp(-x) into RR(t) = t*R(t), with 
the Gardner kernel, KK(t) = t*exp(-t). GG(x) = IDFT{ GG(f) } is a sum of delta functions at xi = -ln(1 / MTTi) with magnitudes proportional to 
Ai*MTTi for the signal R(t) = ∑{ Ai*exp(-t/MTTi) }. RR(t) can also be generated from sums of Lorentzians, Gaussian, or sinc functions. 
METHODS: Smith et al.3 showed key GT practical issues were: 1) Gardner domain signal RR(x) generation from either the (exponential) time do-
main signal, or the (Lorentzian) frequency domain signal, and 2) generating the sparsified signal GG(x) by deconvolving RR(x) by the Gardner kernel 
KK(x). Stabilizing the deconvolution requires removing high frequency noise components in GG(f). However, this filtering operation also removes 
high frequency signal components and widens the peaks in GG(x) reducing sparseness. In this investigation we focus on techniques to recover the 
sparseness lost by filtering by recovering the under-sampled, in this case truncated, GG(f) signal components through the use of a CS reconstruction 
approach based on SparseMRI software1 . We generated the ideal GG(f) signals for a hypothetical multi-exponential signal obtained from an MR time 
series containing both gray matter (GM) and white matter (WM) components due to pixel averaging or other partial volume effect. The resulting sig-
nal has two exponential components, R(t) = EGM+EWM where EGM = exp( -t/MTTGM ) and EWM = exp( -t/MTTWM ); MTTGM = 4.055s, MTTWM = 4.8s. 
GG(f∆f) was calculated for -N/2 <= f < N/2, with N=128, ∆f=1/(N∆x), and a GT exponential spectral resolution of ∆x = 0.05. We examined the ideal 
case of applying CS reconstruction when (1) all GG(f∆f) signal components where presumed known for –N/2 <= f < -N/2, (2) when GG(f) was low 
pass filtered, truncated to 30%, matching GT deconvolution, and (3) when CS reconstruction was performed on the truncated signal combined with a 
CS preconditioning signal; assumed to be derived by mod-
eling of the known central GG(f) core.  
RESULTS: Figure 1A is GT{R(t) = EGM + EWM} when all 
GG(f) components are known. The reason behind the peak 
value and shape differences arise from specific character-
istics of the GT frequency components of EGM and EWM, 
figure 1-GM and 1-WM respectively. GT{EGM(f)}is a basis 
function for an N point DFT since MTTGM = 4.055 = 
exp(28∆x). However, MTTWM = 4.8 = exp(31.4∆x) so that 
GT{EWM(f)} is not a basis function and has discontinuities 
at the frequency domain boundaries, |f| = N/2. SparseMRI 
CS reconstruction attempts to minimize | GG(x) |L1-norm 
widening the EWM peak rather than sharpening it. Note the 
re-introduced GG(f) continuity4. Application of GT-CS on 
the truncated GG(f) leads to significant intensity and GT 
resolution loss, figure 2A, and fails to recover missing 
high frequency components, figures 2-GM and 2-WM. 
This again can be explained smaller L1-norms leading to 
short and wide, rather than tall and narrow, peaks. Precon-
ditioning the missing GG(f) using values obtained by 
modeling the central GG(f) does not lead to an improved 
GG(x) estimate unless a few random GG(f) values are 
assumed known (red-spots in figures 3-GM and 3-WM). 
Figure 3A is almost exactly recovered to the result in fig-
ure 1A despite using half the frequency information. Note 
the lack of k-space continuity4 in EWM(f) again leads to a 
wider GG(x) peak in figure 3A. 
CONCLUSION: We have identified the GT as a sparse 
representation for several non-k-space signals, e.g. multi-
exponentials, and provided preliminary simulations results. Combining GT-CS with k-space extrapolation techniques5,6 are being investigated. 
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Column A: GG(x) CS reconstructions for: 1) 100% sampling, 2) center 30% used, 3) center 30% 
used and 10% random sampling on each side. Column GM and column WM: Frequency magni-
tude response (black), real component of GG(f) (blue), and CS data consistency constraint (red)
for EGM and EWM respectively.
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