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INTRODUCTION: With the help of ℓ -norm-based convex optimization and the restricted isometry property (RIP) of a sensing matrix [1], 
compressed sensing (CS) has become a practical approach to reconstruct sparse images or signals from few samples. CS can be applied to MRI to 
allow reconstruction from many fewer k-space samples, resulting in a remarkable reduction of MRI scan time [2-4]. However, perfect reconstruction 
in applications such as MRI is often not achievable, as the RIP is too strong and the solutions of ℓ - and ℓ -minimization are no longer identical. 
Instead, the weaker RIP based on ℓ p 0  is sufficient to guarantee perfect signal reconstruction [5]. However, ℓ  minimization is an NP-hard 
problem because it requires combinatorial optimization. To make this approach tractable, we propose a fast constrained ℓ , -ℓ -norm (ℓ ,  is an 
approximated ℓ -qusi-norm) minimization algorithm, based on 1) p- and ε-dependent weighting techniques, and 2) an efficient split Bregman-based 
(SB-based; known to have rapid convergence, especially with an ℓ -norm [6]) reweighted ℓ -minimization algorithm. This ℓ , -ℓ -norm 
minimization achieves exact reconstruction from fewer measurements than are required for the ℓ -ℓ -norm case. 
METHOD: The partial collection of k-space samples with zero-mean Gaussian noise is formulated as y Ax n, where y is the observed partial k-
space data, x is the image we want to reconstruct, A is a partial Fourier transform matrix, and n~ 0, Λ . Based on the ℓ , -norm, the solution can 
be written as x argmin ψx , , subject to Ax y , where x , ∑ |x | ε , p 0,1 , ψ is a linear sparse representation 

transform matrix, and  represents the accuracy between the measured data and the reconstruction. We note that ε is introduced into the ℓ -qusi-
norm in an effort to escape from local minima and approach the global minimum. 1) Weighting Technique: Based on the Majorization-Minimization 

(MM) algorithm, the norm above is equivalent to x argmin W ψx , subject to Ax y , where W diag w , wp ψx ε⁄ , and i 1, … , n. 2) Reweighted SB: Using a Bregman iteration and SB technique, this constrained problem can be solved by 
a series of inner updates and an outer update: (In-1) x K z, where K µA ΛA γψ ψ, z µA Λy γψ d b , and ·  

is a technique to invert K and solve Kx z; (In-2) d ψx b , w µ , where x, α | | max |x|α, 0 ; (In-3) b b ψx d ; (Out) y y y Ax . The (In-2) can be computed efficiently by the element-wise 
 operator. The total reconstruction time thus depends on the required computations to solve (In-1), which is to be solved analytically. 

Note that it is impossible to invert K directly because of the enormous size. 
However, if Λ σ I, where σ  is estimated noise variance, and ψ is the 
discrete Haar orthogonal wavelet transform (ψ ψ I), then K is a circulant 
matrix because of the structure of the given A, and we can solve (In-1) efficiently, 
using only two Fourier transforms. We should note that the weighting matrix W  is updated when each inner loop is completed. Finally, our algorithm will 

continue until Ax y  satisfies σ ; thus, the stopping criteria is below 

the expected noise variance, where 0,1 . 
RESULT: We generated Fourier-space samples of a 256 256 Shepp-Logan 
phantom, along 22 radial lines, corresponding to 9% coverage of full k-space. 
These samples are perturbed by zero-mean Gaussian noise with σ 10 . 
Using 10 inner iterations and 140 outer iterations, we performed both ℓ -ℓ  
convex and the proposed ℓ -ℓ  non-convex CS-MRI reconstruction algorithms 
(p=0.1, �=0.05) and compared results. With the same number of measurements 
and iterations, our ℓ -ℓ  algorithm can accomplish perfect reconstruction while 
the ℓ -ℓ  minimization cannot (Table 1, Fig 1). This result is graphically 
demonstrated as a function of iteration in Fig 2b, with the benefit of, introduction 
of ε providing a reasonable ability of escaping from local minima (Fig 2a). 
CONCLUSION: We have presented an efficient non-convex CS-MRI 
reconstruction algorithm by solving a constrained approximated ℓ -ℓ -norm 
( p 0 ) minimization problem based on the MM and SB techniques. By 
introducing an approximation parameter, the proposed algorithm has an ability to 
approach the global minimum robustly. Using this algorithm we can accomplish 
rapid, perfect image reconstruction with fewer required measurements than using 
a ℓ -ℓ  CS-MRI reconstruction algorithm, reducing MR imaging time for 
comparable image quality. 
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 -  Conv. CS-MRI . -  Non-conv. CS-MRI 
Iter. (In/Out) 10 / 140 10 /140 

RMSE 0.001712 1.679e-07 
Table 1. Error 

-  Conv. CS-MRI . -  Non-conv. CS-MRI µ 10 , γ 3 10 , σ 1 µ 10 , γ 3 10 , σ 1, ε 0.05. 

  
Fig 1. Reconstructed images 

Termination cond. vs. Iter num Image error vs. Iter num log Ax y  log RMSE x , x  

 
Fig 2. (a) Min behavior (b) Min behavior comparison 
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