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Purpose: In another submitted abstract “Compressive Diffusion MRI – Part 1: Why Low-Rank?”, we compared several sparsity models and found the low-rank (LR) 
model is the most suitable for diffusion MRI. In this work, assuming that prior images are available, we introduce the Prior-image Constrained LR (PCLR) model, 
through which prior images can be efficiently utilized to improve LR. 

Methods: Let X0=[x1 … xp] be the prior images, and X=[x1 … xq] be the diffusion-weighted (DW) images to be reconstructed. PCLR is formulated as  
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where F denotes the Fourier Transform, P corresponds to the k-space undersampling pattern, and Y is the undersampled k-space data. Here the nuclear norm ||.||* 
regularizes the rank on the augmented matrix [X X0] of X to enforce not only the image similarity among X along the DW dimension, but also the similarity of X with X0. 
Note that Eq. (1) is reduced to the standard LR model when X0 contains no prior image. 

Eq. (1) can be transformed into the following convex optimization problem with X´=[X  X0], RX´=X, R0X´=X0, Y´=[Y  X0], and AX´=[PFX  X0] 
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The convex problem (2) can be solved through the following loop with f0´=0 

YXAff

XXRXXXX

fYXAX

nnn

nnXn

nXn

′−′+′=′
=′′−′+′=′

′+′−′=′

++

++′+

′+

11

010
2
22/1*1

2
22/1

 subject to||||||||minarg

||||minarg

λ
     (3) 

Here the 1st equation in (3) is equivalent to the update 
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And thus we have the following simple-to-implement loop for solving Eq. (1) 
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Step 1 in Eq. (5) simply means the k-space comes from the acquired data Y for the sampled k-space and from the last iterate X for the un-sampled k-space, up to a 
residual consistency term  fn. Steps 2 is to solve the constrained nuclear norm problem (i.e., the second equation of (3)), which mainly consists of  the singular value 
decomposition (SVD) for global sparsity, and then the thresholding for finding the principal components to enforce the self similarity of X and the similarity of X with 
prior images X0. Step 3 is to add the uncorrected residual back to be corrected, which is equivalent to decrease λ. Note that the algorithm described by Eq. (5) can also 
be applied for the LR model when no prior image is available. Unlike the local sparsity model (e.g., the total variation or the wavelet sparsity model), the inclusion of an 
arbitrary number of prior images is straightforward for PCLR. Moreover, the additional computational cost from LR to PCLR is practically negligible. 

The tuning of the regularization parameter is not necessary when the problem is scaled. That is we scale the k-space data so that the maximum of the image magnitude 
is nearly one. This for example can be efficiently done through a zero-filling Fourier transform. Then we choose 2λ=1. Here as long as λ is sufficiently large (e.g., from 
0.1 to 1), the residual update f in (5) (without updating λ) will be equivalent to solving Eq. (2) with a fine-tuned λ. As a result, Eq. (5) is nearly parameter-free. However, 
an educated guess of λ will certainly accelerate the solution 
convergence by reducing the number of iterations. On the other 
hand, the relative difference (i.e., ||Xn+1-Xn||) serves as the 
stopping criterion. 

Results: The image reconstruction results from LR without any 
prior image (LR), PCLR with 2 prior images (LR2), and PCLR 
with 4 prior images (LR4) are presented in Fig. 1. Here the DW 
images have 60 DW directions (D=60), SNR=30, various b 
values (i.e., b=1000, 2000, and 3000), 6-fold and 10-fold k-
space undersampling respectively. The prior images were 
generated with different DW directions from the above 60 
directions, with the same SNR and the same b value, to avoid a 
bias in the prior images. Fig. 1 indicates that PCLR improves LR 
in terms of both the reconstruction error and the image quality. 

 

Conclusion and Discussion: Since LR is suitable for diffusion MRI, we have introduced PCLR to improve LR when prior images are available. When multiple prior 
images are available, the use of these priors in the local sparsity model may be tedious, e.g., one may need to additionally enforce the local difference between every 
image to be reconstructed and every prior image. However, the PCLR method described here is able to utilize many prior images with negligibly increased 
computational time. In addition, a simple-to-implement and efficient algorithm has been proposed to solve PCLR.  

Fig. 1. Image reconstruction via LR and PCLR. (a) The gold standard. (b) 
The plot of the total reconstruction errors from LR, PCLR with 2 prior 
images (LR2), PCLR with 4 prior images (LR4), with respect to the 
undersampling ratio (6, 10) and the b value (1000, 2000, 3000), at D=60
and SNR=30. (c), (d), and (e) are the results from LR, LR2 and LR4
respectively with 10-fold undersampling. For (c)-(e), the 1st row consists of
the reconstructed images represented in a DW direction (x-y), the central x-
slice with all DW directions (x-q), the central y-slice with all DW directions 
(y-q), and the zoom-in detail of the ROI; the 2nd row consists of their
differences from the original images. Here the prior images are generated 
with different DW directions from the above 60 directions, with the same
SNR and the same b value, to avoid the biased prior images. 
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