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TARGET AUDIENCE: Image reconstruction and compressed sensing; neuroimaging scientists

and clinicians.

PURPOSE: The far reaching adoption of compressed sensing (CS) for clinic MRI hinges on the
ability to accurately produce images in a reasonable time-frame. Multiple contrast studies have

been successfully combined with joint Bayesian image reconstruction [1,2,3] in order to exploit

mutua information for improved image quality. However, these techniques have prohibitive

computational requirements. We leverage hierarchical matrix analysis and compression schemes

[4,5,6] to facilitate scalable and accurate CS reconstruction. Our approach is over 100x faster

than other multiple contrast approaches [1,2] while still improving image accuracy by over 35%

compared to single image CS techniques[7].

METHOD: The proposed method captures critical information from point spread functions to be

used within our variance estimation framework (SAVE) for Bayesian reconstruction.

Joint Bayesian CS: Based upon the Bayesian CS formulation described in [1,2,3] we consider L

under-sampled images {x;};=1, , With associated image and k-space gradients {§;};=,, and

{z;}i=1,.- The data are modeled to be corrupted by complex Gaussian noise with variance a2,

assuming an under-sampled Fourier operator F,. The L images are coupled using a Gaussian

prior and through Bayes rule, the posterior becomesp(6;1z;,y) = N(u;,Y,). Here, we need to

iteratively solve for the diagonal entries of (i) ¥ = (I'! + a_ngFQ)_l and the linear solution

of (i) w; = I'Ff (%1 + FQI“F!’{)_IZL- , Where the hyperparameters I' = diag(y) are updated

during each iteration using y, < |lull?/(L — LY ¢e/ve)-

Scalable and Accurate Variance Egtimation: Attempts have been made to solve Eqg. (i) through low

rank approximation [2] using a Lanczos based algorithm [8]. These methods have been shown to
significantly reduce normalized root-mean-sgquare error (NRMSE) when compared to the total

variation (TV) penalty CS algorithm by Lustig et a. [7]. However, the method suffers from
prohibitive computationa time. We consider an aternative approach that approximates point
spread functions to exploit sparse matrix methods. Fig. 1 shows a R=4 random under-sampling
pattern with associated point spread function. The significant entries can be used to approximate
the operator (F{{ FQ) by a sparse matrix. The correlation inverse can then be hierarchically
compressed [6]. To solve Eq. (i) efficiently, the compressed matrix is used within a fast variance

estimation technique similar to [4,5]. Eqg. (ii) can be
solved using standard GMRES.

RESULTS: We consider the SRI24 atlas [9] that
features 200200 proton density (PD), T2, and T1
weighted scans. We under-sample all with R = 4 (Fig. 1)
and a zero fill-in image is supplied as prior. Fig. 2 shows
the accuracy and run-time for Lustig et a. TV [7], along
with 5 iterations for both Bilgic et a. [2] and the
proposed SAVE method using MATLAB on a AMD
Opteron 6282SE.

DISCUSSION: Figs. 2(ab) show the T2 and T1
wei ghted reconstructions respectively with the associated
NRMSE. For the T2, T1, and PD images, Lustig et a. [7]
required 1.2min with mean error of 3.26%. Bilgic et a.
[2] produced the lowest error 1.94% but with prohibitive
run-time of 28.8hours. The SAVE method achieved
2.15% mean eror in under 9min. The computational
performance of SAVE is summarized in Fig 2(c).
CONCLUSION: We present a variance estimation
framework for joint Bayesian CS reconstruction of
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Fig. 1. (ab) point spread function and sparse
approximation (c) sparsity pattern for inverse
correlation (d) compressed matrix form (e)
scalable variance estimation

(c) Error vs. time for SAVE and
Lustig [7]. Bilgic [8] time > 100x
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2.2% Fig. 2. (a,b) accuracy (NRMSE) for
T2 and T1 images. Time includes
PD image (not shown), [7] and
SAVE in min and for [2] in hours
(c) accuracy-time trade-off for [7]
and SAVE.
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multiple contrast images. Our approach offers over 100x speed-up compared to [1,2] while preserving image accuracy. Our scalable and accurate
framework for CS reconstruction is applicable to awide range of under-sampling strategies and acquisitions.
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