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TARGET AUDIENCE: Image reconstruction and compressed sensing; neuroimaging scientists 
and clinicians. 
PURPOSE: The far reaching adoption of compressed sensing (CS) for clinic MRI hinges on the 
ability to accurately produce images in a reasonable time-frame. Multiple contrast studies have 
been successfully combined with joint Bayesian image reconstruction [1,2,3] in order to exploit 
mutual information for improved image quality. However, these techniques have prohibitive 
computational requirements. We leverage hierarchical matrix analysis and compression schemes 
[4,5,6] to facilitate scalable and accurate CS reconstruction. Our approach is over 100x faster 
than other multiple contrast approaches [1,2] while still improving image accuracy by over 35% 
compared to single image CS techniques [7]. 
METHOD: The proposed method captures critical information from point spread functions to be 
used within our variance estimation framework (SAVE) for Bayesian reconstruction. 
Joint Bayesian CS: Based upon the Bayesian CS formulation described in [1,2,3] we consider L 
under-sampled images ,  , with associated image and k-space gradients  ,  and  , . The data are modeled to be corrupted by complex Gaussian noise with variance , 
assuming an under-sampled Fourier operator . The L images are coupled using a Gaussian 
prior and through Bayes’ rule, the posterior becomes | , , ∑ . Here, we need to 

iteratively solve for the diagonal entries of (i) ∑  and the linear solution 

of (ii)  , where the hyperparameters  are updated 
during each iteration using / ∑ / .  
Scalable and Accurate Variance Estimation: Attempts have been made to solve Eq. (i) through low 
rank approximation [2] using a Lanczos based algorithm [8]. These methods have been shown to 
significantly reduce normalized root-mean-square error (NRMSE) when compared to the total 
variation (TV) penalty CS algorithm by Lustig et al. [7]. However, the method suffers from 
prohibitive computational time. We consider an alternative approach that approximates point 
spread functions to exploit sparse matrix methods. Fig. 1 shows a R=4 random under-sampling 
pattern with associated point spread function. The significant entries can be used to approximate 
the operator   by a sparse matrix. The correlation inverse can then be hierarchically 
compressed [6].  To solve Eq. (i) efficiently, the compressed matrix is used within a fast variance 

estimation technique similar to [4,5]. Eq. (ii) can be 
solved using standard GMRES. 
RESULTS: We consider the SRI24 atlas [9] that 
features 200×200 proton density (PD), T2, and T1 
weighted scans. We under-sample all with R = 4 (Fig. 1) 
and a zero fill-in image is supplied as prior. Fig. 2 shows 
the accuracy and run-time for Lustig et al. TV [7], along 
with 5 iterations for both Bilgic et al. [2] and the 
proposed SAVE method using MATLAB on a AMD 
Opteron 6282SE.  
DISCUSSION: Figs. 2(a,b) show the T2 and T1 
weighted reconstructions respectively with the associated 
NRMSE. For the T2, T1, and PD images, Lustig et al. [7] 
required 1.2min with mean error of 3.26%. Bilgic et al. 
[2] produced the lowest error 1.94% but with prohibitive 
run-time of 28.8hours. The SAVE method achieved 
2.15% mean error in under 9min. The computational 
performance of SAVE is summarized in Fig 2(c). 
CONCLUSION: We present a variance estimation 
framework for joint Bayesian CS reconstruction of 
multiple contrast images. Our approach offers over 100x speed-up compared to [1,2] while preserving image accuracy. Our scalable and accurate 
framework for CS reconstruction is applicable to a wide range of under-sampling strategies and acquisitions. 
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Fig. 1. (a,b) point spread function and sparse 
approximation (c) sparsity pattern for inverse 
correlation (d) compressed matrix form (e) 
scalable variance estimation 

 

(c) Sparsity pattern: 

 

(d) Hierarchical matrix 
compression [6] of (c) 
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(a) R=4 sampling (b) Point spread function 

(e) Variance estimation 
using domain 

decomposition [4] or 
partial factorization re-

use methods [5] 

Fig. 2. (a,b) accuracy (NRMSE) for 
T2 and T1 images. Time includes 
PD image (not shown), [7] and 
SAVE in min and for [2] in hours 
(c) accuracy-time trade-off for [7] 
and SAVE. 

(c) Error vs. time for SAVE and 
Lustig [7]. Bilgic [8] time > 100x 
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