
 
Fig. 1: Flesh-air interface of the head (red data 
points) and a fitted ellipsoid (green). The B1

+

prediction method is based on the matching of 
ellipsoid eigenvectors to those in an atlas. 

 
Fig. 2: Actual B1

+ maps measured in vivo at 7 T (top); predicted
maps (middle); the absolute difference in the two is expressed in
the units of the nominal B1

+ strength (bottom). 
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Introduction 
Patient-specific mapping of the transmitted RF field (B1

+) is currently requisite for multi-channel RF 
shimming as well as for many RF pulse designs that compensate for B1

+ heterogeneity in MRI systems 
with either single- or multi-channel transmission capabilities. The primary purpose of this research is to 
investigate a technique that could eliminate the pre-calibration step of measuring B1

+ by predicting RF 
fields from the physical shape of the imaging volume. This approach is highly significant in that it could 
drastically accelerate the pre-scan workflow at high-field, thus bringing ultra-high-field MRI 
considerably closer to clinical deployment. To date, our research has been carried out only in the context 
of 7 T MRI of the human brain; however, similar strategies may prove useful for imaging other anatomy 
and at different field strengths. 
 
Methods 
Our procedure for predicting RF fields begins with the acquisition of an atlas of 7 T RF field maps [1] in 
the brains of 20 subjects along with typical survey scans and whole-brain B0 maps acquired via a dual-
echo, 3-D FFE sequence with 3mm isotropic resolution (~20 s duration). Anatomical data from the first 

echo are used to determine the basic 
geometry of each subject’s head—a step 
accomplished through fitting an ellipsoid 
to the flesh-air interface (Fig. 1). The whole-head images and associated B1

+ maps are 
then registered to a designated reference using established rigid-body registration 
methods [2]. For any new patient, a B0 scan is used to determine basic head shape by 
the same means. A numerical minimization algorithm then determines which head 
from the atlas is the best geometrical match, and the corresponding B1

+ map from the 
atlas is rigidly registered to the patient’s head. Evaluation is based on comparison of 
measured and predicted B1

+ maps and the corresponding performance of RF pulses. 
 
Results and Discussion 
Preliminary results demonstrate that spatial B1

+ intensity can be predicted with high 
accuracy via the proposed technique. The striking similarity between actual and 
predicted B1

+ field maps in a given subject is evident in Figure 2, with a whole-brain 
mean difference of 5.5±4.7%. This level of variation is far less than that observed when 
using different field mapping techniques in the same subject [3]. The influence of B1

+ 
field prediction on RF pulse efficacy is demonstrated through performance evaluation 
of kT-points pulses [4] designed using the actual and predicted B1

+ maps for a single 
subject (Fig. 3). Pulses designed from predicted maps are then used in flip-angle 
simulations based on the measured field maps. The results suggest that pulses designed 
from predicted B1

+ maps may vary slightly in the specific patterns of excitation but 
nevertheless achieve a similar degree of flip-angle homogeneity. 
    Accurate RF field prediction would undoubtedly have a high impact on the 
workflow of MR systems whenever knowledge of the RF fields is required. For 
example, RF shim coefficients or B1

+-compensating pulse designs (e.g. spokes pulses) 
could be calculated while forgoing the time-consuming step of B1

+ mapping. Pulses or 
shim values, having been previously designed for each of the field maps of the atlas, 
could even be used to entirely avoid the process of real-time RF calibration. 
Furthermore, the proposed B1

+ prediction methods are likely to prove useful in the 
context of SAR prediction. Such accomplishments would clear several major hurdles 
pertaining to the practical clinical use of ultra-high-field MRI. 
 
Conclusion 
A method of estimating B1

+ distributions in the human brain at 7 T has been described 
and validated through simulation. The approach is shown to predict whole-brain B1

+ 
fields with high accuracy and with computational times of <1 s, making it a viable and 
attractive alternative to conventional subject-specific B1

+ mapping in high-field MRI. 
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Fig 3: Simulated flip-angle maps (in degrees) using a 9 kT-point 
pulse design. Flip-angle maps resulting from measured B1

+ maps 
(top row) and those resulting from the predicted B1

+ maps (bottom
row) exhibit slight differences in the spatial excitation patterns but 
a similar degree of flip-angle homogeneity. 
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