
Robust Low-rank Matrix Completion for sparse motion correction in auto calibration PI 
Zhongyuan Bi1, Martin Uecker2, Dengrong Jiang3, Michael Lustig2, and Kui Ying3 

1Biomedical Engineering, Tsinghua University, Beijing, Beijing, China, 2Electrical Engineering and Computer Science, University of California Berkeley, 
Berkeley, California, United States, 3Engineering Physics, Tsinghua University, Beijing, Beijing, China 

 
Purpose 
Auto-calibration parallel imaging (acPI) [1] is based on local correlations in k-space. It is known to 
perform robustly in practice, especially when accurate sensitivity information is hard to obtain. Also, 
acPI renders new opportunities for motion correction [2]. However, the reconstruction quality of 
acPI methods is highly dependent on the accuracy of the interpolation kernels calculated from the 
auto calibration signal (ACS). Corruption of ACS data, e.g. by motion, often leads to serious 
artifacts in the reconstructed images. In this work, we propose to exploit the redundancy in k-space 
to detect and correct sparse corruptions in ACS data, which could result from random, time-limited 
motion in clinical practice (e.g. swallowing, jerk, etc). Our work is based on low-rank matrix 
completion with sparse errors, and is an extension of our calibrationless parallel imaging 
reconstruction methods [3,4] . 
Methods 
Low-rank matrix completion: In general, missing entries of a matrix can be completed if the matrix 
is low-rank. This could be efficiently achieved by singular-value thresholding (SVT) [5]. In acPI, 
the calibration matrix should have low-rank [3,4]. However, if corrupted by random and sparse 
errors, the correlation within the calibration matrix will be reduced, leading to higher rank values. 
Intuitively, we could enforce low-rank regularization onto the corrupted calibration matrix to detect 
and correct these errors. For consistency with the uncorrupted acquired data, we use a 
soft-thresholding scheme to control the difference between original k-space and newly synthesized 
k-space by low-rank approximation.  The flowchart of our proposed method is shown in Figure 1 
and can be described as: (1) Construct matrix A from over-lapping blocks; (2) Compute
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(4) Reconstruct k-space from A; (5) Soft-threshold the difference between original k-space and the 
synthesized k-space, the resulting k-space can be expressed point-wise as: 
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resulting k-space by soft-thresholding, respectively. γ  is the threshold for 

soft-thresholding, and 
  shrink(x,γ ) = sign(x) • max( x − γ ,0) ; (6) 

Repeat 1-5 till convergence. 
Experimental setup: T1-weighted axial head data were acquired on a 1.5T 
GE system with an 8-channel head coil, using RF-spoiled gradient-echo 
sequence (inversion-recovery prepared 3D, TR=12.2ms, TE=5.2ms, 
TI=450ms, FA=20°, matrix size= 256 180 230× × ). To simulate sparse 
and random corruptions by time-limited motions, random phase shift was 
added to 20% of the fully-acquired k-space. Corrupted points distributed 
randomly in k-space, with identical positions in every coil.  
Results and Discussion 
Figure 2 demonstrates the simulation results. Incoherent artifacts appear in the corrupted image, 
but after correction, these artifacts are greatly reduced while the boundaries are still 
well-preserved. Figure 3 verifies the assumption that corrupted data matrix has higher rank. 
After correction, the rank has been lowered and the singular values are almost identical to the 
original uncorrupted data matrix. In this initial work, SVT-based correction was done to the 
whole k-space to demonstrate its efficiency. Further work will be to apply this method to correct 
the calibration area only, and use other methods like GRAPPA to reconstruct the rest of k-space. 
Thus, we can reduce computational costs and improve image quality in situations where motion 
exists.    
Conclusion 
We present a new motion-correction method based on low-rank matrix completion. Simulation 
results demonstrate that it could be used to correct random and sparse corruptions in calibration 
area in acPI. Experiments on in-vivo data is underway to verify the potential of proposed method 
to solve motion problems caused by swallow or jerk in clinical practice, especially in 3-D 
imaging. 
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Figure 1. The flowchart of the algorithm based on 
singular-value thresholding and soft-thresholding 
of the residual. 

Figure 3. Singular values for corrupted, corrected 
and original uncorrupted data matrix. 
 

Figure 2. Reconstructed images from: (a) corrupted k-space; (b) 
corrected k-space by Robust Low-rank Matrix Completion; (c) 
uncorrupted k-space; 
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