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PURPOSE: There has been much advancement in reducing motion corruption 
especially for rigid-body motion. Many of these correction methods require specific 
setup and/or modifications to the data acquisition. Even with these methods, there may 
be residual artifacts due to motion measurement error. Automatic correction methods 
can be applied without any motion information. We propose a novel automatic 
approach using the k-space magnitude constraint. This new element is incorporated 
with parallel imaging and compressed sensing to help guide the correction. 

METHOD: For rigid-body in-plane motion, the corruption manifests as inconsistent 
phase. The translational motion can be represented by linear-phase for motion in the 
readout direction (dx) and a bulk-phase shift for motion in the phase-encode direction 
(dy). Additionally, small rotations can be modeled as k-space shearing (dr) – in other 
words, a linear-phase with respect to x in the (x,ky)-hybrid-space. Conventional 
methods (such as least-squares [1] and cross-correlation [2]) can be used to estimate 
the linear phases. In summary, the magnitude of the acquired k-space data is 
uncorrupted by motion. This k-space magnitude constraint is described in Fig. 1c. 

Algorithm: The parallel imaging (SPIRiT [3]) and sparsity (minimizing the L1-norm 
of its wavelet transform [4]) constraints are enforced to help guide the automated 
correction. These constraints can be used individually (Fig. 1a) or together (Fig. 1b). 
We used a generalized-projections algorithm to solve the correction problem.  

Step 1: The data is projected onto the parallel imaging or sparsity set. This step 
reduces the motion-artifacts and gives an estimate of the true image ( ). 

Step 2: The data is then projected onto the k-space-magnitude-constraint set. This 
step estimates and applies the motion parameters dr, dx, and dy (Fig. 1c). 

Step 3: The first two steps are repeated until a 
reasonable convergence is found. 

Experiments: Volunteer studies were performed in 
a GE 1.5T Signa scanner for in vivo studies of the 
head and knee. The algorithm was first tested on 
the head study with simulated motion.  

Scan Parameters: Head study: axial T1-weighted 
fluid-attenuated-inversion-recovery 2D sequence, 
echo train length = 6, TE/TI/TR = 26.9/750/822 
ms, resolution = 0.82×1.01 mm2, 5 mm slice, FOV 
= 26×23.4 cm2, bandwidth = ±31.25 kHz, 8-ch 
head coil. Leg study: axial gradient-recalled-echo 
2D sequence, TE/TR = 3.1/51 ms, resolution = 
0.94×0.96 mm2, 5 mm slice, FOV = 24×24 cm2, 
bandwidth = ±31.25 kHz, 4-ch knee coil. 

RESULTS & DISCUSSION: By applying this 
method to conventional scans, a reduction of 
motion-artifacts can be seen (Fig. 3). The approach 
explores the area of phase-retrieval – first proposed 
in Ref. 5. Our approach expands on that idea and 
uses advancements of accelerated imaging to 
improve the reconstruction. Note that the k-space 
magnitude constraint is not a convex set. By 
limiting the severity of the motion (such as through 
gating/triggering or prospective correction), we can 
ensure convergence. Also, through-plane motion 
can be limited by monitoring the motion with self-
navigation or external devices. Lastly, rotating and 
gridding the data can further improve the automatic 
correction for rotations.  

CONCLUSION: We demonstrate and present a 
novel method for automatic rigid motion correction 
by leveraging parallel imaging and sparsity. This 
method can be easily extended to support 3DFT 
imaging and to support accelerated acquisitions. 

 
 
 

 

FIG. 3: In vivo results. a: 
Head scan. b: Upper leg scan. 
The first column shows the 
scans with no motion. For the 
second column, the volunteer 
was asked to perform in-plane 
movements during the scan. 
The corrected images are 
shown in the last column. A 
reduction in motion ghosting 
and some noise can be 
appreciated. Some residual 
artifacts remain due to a small 
degree of non-rigid motion and 
through-plane motion. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 1: Method overview. a: Basic method – either the parallel-
imaging (PI) or the sparsity (CS) constraint can be applied during 
each iteration. b: Inclusive method – alternate between applying the 
parallel-imaging constraint and the sparsity constraint. c: Steps and 
equations to enforce the k-space magnitude. Note that m[x, ky] is the 
image in hybrid-space. 

 FIG. 2: Simulation results. a: 
Applied translational & rotational 
motion (dotted lines), and the 
estimated  motion from applying 
the algorithm (solid lines). b: 
From left to right, original brain 
scan, image after motion 
simulation, and the final corrected 
image. With the k-space shearing 
approx., the rotational motion is 
more difficult to characterize (esp. 
near the center of k-space) and 
some residual artifacts remain. 
Fortunately, the algorithm was 
able to characterize the motion 
and correct the image. The final 
image demonstrates a reduction in 
motion-artifacts and a recovery of 
the white/grey matter contrast. 
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