
Magnetic Susceptibility and Field Map Estimation in fMRI time series using a High Resolution Static Field Map 
Hiroyuki Takeda1 and Boklye Kim2 

1Radiology, University of Michigan, Ann Arbor, Michigan, United States, 2Radiology, University of Michigan, ann arbor, MICHIGAN, United States 
 

Introduction: Functional MRI (fMRI) time series data are mostly acquired using echo planar imaging (EPI) sequence which provides the advantage of high temporal 
resolution. Yet, EPI is highly sensitive to the magnetic field inhomogeneity and results in geometric distortions and non-uniform blur in the acquired images [1]. A 
static field-inhomogeneity map may be measured before or after an fMRI session to correct for such distortions, but it does not account for magnetic field changes due 
to head motion during the time series acquisition. In practice, the field map dynamically changes with head motion during the scan, and such a changing field leads to 
variations in geometric distortions. A previous retrospective approach of approximating a dynamic field map by applying rigid body transformations to an observed 
static field map may not be sufficient in the presence of significant out-of-plane rotations since the field inhomogeneity may change nonlinearly [2]. We model in this 
work the field inhomogeneity with two specific, the object and the scanner dependent terms. We assume that the scanner-specific field remains unchanged and 
independent of the head motion. The object-specific term varies with the object’s magnetic susceptibility and orientation, i.e., head position with respect to B0. Thus, 
the simple transformation of the acquired field map may not yield an accurate field map. Our approach in this study is to retrospectively estimate the object’s magnetic 
susceptibility (χ) map from an observed high-resolution static field map using an estimator derived from a probability density function of non-uniform noise. This 
approach is capable of finding the susceptibility map regardless of the wrapping effect. To compute the dynamic field maps, we apply rigid body motion to the χ-map 
estimate, and apply 3D susceptibility voxel convolution (SVC) which is a physics based discrete convolution model for computing ߯ induced field-inhomogeneity given 
a 3D χ-map [2]. 
Method: A field map ܤ߂ is obtained from a pair of (complex-valued) images acquired at different echo times, ୉ܶଵ and ୉ܶଶ (a dual-echo sequence was used [3,4]). The 
field inhomogeneity (ܤ߂) is measured from the phase difference ߠ between the two images as ߠ[rad] = ୘̅୉ଵܫ)∠ ⋅ (୘୉ଶܫ = ߂ܤ߂ߛ ୉ܶ −  is the gyromagnetic ߛ where ,݊ߨ2
ratio, −2݊ߨ represents the wrapping effect with some integer ݊ so that ߠ stays in [−ߨ, ߂ and ,[ߨ ୉ܶ = ୉ܶଶ − ୉ܶଵ. We denote that ܤ߂ = ఞܤ߂ +  ୱܤ߂ ఞ andܤ߂ , where	௦ܤ߂
are the object-specific susceptibility (߯)-induced field and the scanner specific terms, respectively. The ߯-induced field produces ܤ߂ఞ = ℎ ∗ ߯ +  where ℎ is the 3D ,ୣܤ߂
SVC kernel [3,5] and ୣܤ߂ is the error due to ߯ induced secondary field effect. We have a data model as 

(ܚ)ߠ  = (ܚ)ୱܤ߂൛ߛ + (ܚ)ఞܤ߂ + ߂ൟ(ܚ)ୣܤ߂ ୉ܶ − (ܚ)݊ߨ2 + (ܚ)ߝ = (ܚ)ୱߠ + ߂ߛ ୉ܶ ⋅ ℎ(ܚ) ∗ (ܚ)߯ − (ܚ)݊ߨ2 + (ܚ)ߝ 		∈ ,ߨ−]  (1) [ߨ
where ܚ = ,ݔ] ,ݕ ,ݖ  ஫ߠ is zero-mean (real-valued) additive noise, and ߝ  ,of the multi-coil scanner (ݍ) represents the spatial voxel coordinate and the coil index [ݍ
(= ୱܤ߂)ߛ + ߂(ୣܤ߂ ୉ܶ). Assuming that ܤ߂ఞ > ୱܤ߂ >  by applying a low-pass filter, e.g. [6,7], then the ߠ ஫ is separated fromߠ ,and smooth across the space, often ୣܤ߂
susceptibility map ߯ is estimated by deconvolution using the SVC kernel ℎ where the noise ߝ is assumed to be Gaussian. By this assumption the noise ߝ may become 
non-uniform and necessitates the estimation of local noise variance and phase unwrapping, which is not an easy task due to the non-uniform noise and the complex 
structure of the human anatomy. These issues can be handled by introducing appropriate noise statistics. Assuming that the noise ridden on the two images, ܫ୘୉ଵ and ܫ୘୉ଶ, is i.i.d. zero-mean complex Gaussian noise with variance of ߪଶ, we derive the provability density function (PDF) of the noise ߝ in (1) as 

((ܚ)ߝ)݌  ∼ exp{(ܚ)ߢ ⋅ cos {(ܚ)ߝ with (ܚ)ߢ = ଶ|(ܚ)୘୉ଵܫ|)ଶ|(ܚ)୘୉ଶܫ|ଶ|(ܚ)୘୉ଵܫ| + ଶߪ(ଶ|(ܚ)୘୉ଶܫ| +  ସ. (2)ߪ

It is advantageous that the term 2݊ߨ has no effect in cos(⋅) and the term ߢ eliminates noisy data (i.e. phase samples in the region where the coil sensitivity is low)  by 
giving small weights. Having introduced the data model (1) and the noise PDF (2), we have the following maximum likelihood estimator for ߯ and ߠ஫ with 
regularizations as 

 maxఞ,ఏ౩ ෍ (ܚ)ߢ ⋅ cos൫(ܚ)ߠ − (ܚ)஫ߠ − Δߛ ாܶ ⋅ ℎ(ܚ) ∗ ൯(ܚ)߯ + ෍ ൛ߤଵcos൫Υ௜(ܚ) ∗ ൯(ܚ)஫ߠ − (ܚ)ଶ|Γ௜ߤ ∗ ܚ	ୟ୪୪	ൟ௜ୀ{௫,௬,௭}୤୭୰|(ܚ)߯  (3) 

where ߤଵ and ߤଶ are the regularization parameters for ߠ஫ and ߯, respectively,  andΓ௜ and Υ௜ are the filters of the first and second derivative, respectively, along ݅-axis for ݅ = ,ݔ} ,ݕ  We chose the filters based on the assumptions that the scanner-specific field is piecewise smooth and the ߯-map is piecewise constant across the space. We .{ݖ
estimate  ߠୱ and ߯ by the steepest descent method with updating ߠ஫ and ߯ iteratively. We initialize ߯ by first making a binary image of the body tissue and air from ܫ୘୉ଵ 
of one coil channel then filling the literature ߯ values of water and air in. We also initialize ߠ஫ with the residuals, i.e. ߠ෠஫(଴) = ߠ − Δߛ ୉ܶ ⋅ ℎ ∗ ߯̂(଴) with ߯̂(଴) the initial ߯-
map. The 2nd order term ୣܤ߂ can be estimated by treating it as an error in the field map computation on the distortion correction and iteratively refines the computed 
field map as described in our previous work [8]. 
Experiments: We estimated ߯ maps from two data sets from a homogeneous phantom and a real human subject. Both data were taken by a dual echo sequence with the 
voxel resolution 1 × 1 × 1[mmଷ] and ܶ2ܧܶ/1ܧ = 4.0/5.5	. In Fig.1 we show (a) magnitude images and (b) measured field maps from one channel out of 13 channel 
data, (c) estimated susceptibility maps (߯̂) and (d) field error ߠ෠஫, (e) residuals (= ߠ − ෠஫ߠ − Δߛ ாܶ ⋅ ℎ ∗ ߯̂). For the homogeneous phantom, the known ߯ value was 
approximately equal to the water’s (≈ 9.06 × 10ି଺), and the estimated ߯ values was 8.95 × 10ି଺. Using the estimated ߯-map, (f) ߯-induced field map was computed 
by SVC. 
Conclusion and 
Future works: We 
derived an effective 
PDF of the noise 
ridden on the phase 
image and a 
susceptibility-map 
estimator based on 
the PDF. Our 
estimator is 
advantageous that 
no segmentation of 
human-tissue/air or 
phase unwrapping is 
necessary and the 
noisy samples are 
removed by the 
weight function ߢ in 
the PDF. The effectiveness of our method has been demonstrated in the experimental result. Further study will include the computation of ߯-induces field map affected 
by the head motion for the reconstruction of the geometrically distorted images in fMRI. 
References 
[1] Edelman, R. R., et al., Radiology, 192(3):600-612, 1994; [2] Yeo, D.T.B., et al., MRI, 26(5):703-714, 2008; [3] Salomir, R., et al., Concepts in MR Part B: MRE, 
19(1):26-34, 2003; [4]  Yeo D.T.B., et al., MRI, 25(9):1263-1271, 2009; [5] Marques, JP., et al., Concepts in MR Part B: MRE, 25(1):65-78, 2005; [6] de Rochefort, L., 
et al., MRM, 63:194-206, 2010;  [7] Wharton, S., et al., MRM, 63:1292-1304, 2010; [8] Takeda, H., et al., in proc. the 20th ISMRM meeting, 2011. 

Figure 1. Susceptibility map estimation using a homogeneous phantom (upper column) and a human MRI data (lower column):(a) magnitude images, (b) acquired 
field maps of one coil channel, (c) estimated ࣑ maps (࣑ෝ), (d) error ࣂ෡૓, and (e) € the residuals (= ࣂ − ෡૓ࣂ − ࡱࢀઢࢽ ⋅ ࢎ ∗  induced field-࣑ ෝ) and (f) the computed࣑

Magnitude images |ܫ୘୉ଵ| Acquired field-maps ߠ[rad] Estimated ߯-maps by (3) Estimated ߠ஫ by (3) Residuals 
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Δܤఞ = ଴ܤ ⋅ ℎ ∗ ߯̂ 
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