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INTRODUCTION 
 Recently, there have been an increasing number of studies that have used the chemical exchange effect to probe the tissue microenvironment and provide novel 
imaging contrasts that are not available from conventional magnetic resonance imaging (MRI) techniques. Most of these studies adopted either a chemical exchange 
saturation transfer (CEST) or a spin-locking (SL) approach. Jin et al. [1] performed CEST and SL experiments to compare the characteristics of the CEST and SL 
approaches in the study of chemical exchange effects, and pointed out that the SL approach has a higher signal-to-noise ratio (SNR) than the CEST approach. On the 
other hand, the numerical solutions to the time-dependent Bloch equations including the chemical exchange effect are useful not only for investigating the contrast 
mechanism and optimal conditions of CEST MRI but also for quantifying chemical exchange rates. The purpose of this study was to present a simple and fast method 
for solving the time-dependent Bloch equations with SL and to propose a new method for quantifying chemical exchange rates from CEST MRI using this method.  
MATERIALS AND METHODS 
 The Bloch equations in the 2-pool CEST model consisting of pools of bulk 
water protons (w) and water-exchangeable solute protons (s) are given by 
dM(t)/dt=A(ω,ω1,φ)・M(t)...(1) [2], where M(t)=[Mx
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s(t) 1]T and superscripts w and s show the parameters in pool w and 
pool s, respectively. For example, Mx

w(t) denotes the x component of the 
magnetization in pool w at time t. A(ω,ω1,φ) in Eq. (1) is given by Eq. (2), 
where R1

w (=1/T1
w) and R2
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w) denote the longitudinal and transverse 

relaxation rates in pool w, respectively, R1
s (=1/T1

s) and R2
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s) those in 
pool s, kws the exchange rate from pool w to pool s, ksw the exchange rate from pool s to pool w, and M0

w and M0
s the 

thermal equilibrium z magnetizations in pool w and pool s, respectively. Δωw and Δωs are given by ωw-ω and ωs-ω, 
respectively, where ωw and ωs are the Larmor frequencies in pool w and pool s, respectively, ω and ω1 are the frequency 
and nutation rate of RF-pulse irradiation, respectively, and φ is the angle of RF-pulse irradiation with respect to the x-axis. 
The solution of Eq. (1) can be given by M(t)=eA(ω,ω1,φ)t

・M(0)...(3) [2], where M(0)=[0 0 0 0 M0
w M0

s 1]T and eA(ω,ω1,φ)t is 
the matrix exponential that can be computed using diagonalization [2].  
 Figure 1 illustrates the diagram of the pulse sequence with (a) and without SL (b). When spins are locked by an SL 
pulse that is applied on the x-axis at an offset frequency Ω [Fig. 1(a)], the effective SL magnetic field (B1

eff) is given by 

B1
eff=(ω1

2+Ω2)1/2/γ, where γ is the gyromagnetic ratio. To achieve SL, the magnetization is first flipped by the 
θ-degree pulse to the x-z plane, then locked by B1

eff for a duration of SL (tSL), and then flipped back to the z-axis 
for imaging. On the analogy of Eq. (3), the θ-degree rotation matrices [R(θ)] and [R(-θ)] are given by 
eA(ω,ω1θ,-π/2)tθ and eA(ω,ω1θ,π/2)tθ, respectively, where θ=tan-1(ω1/Ω) and tθ is a duration of the θ-degree pulse irradiation 
given by tθ=θ/ω1

θ [Fig. 1(a)]. Thus, we obtain the magnetization after SL as M(tSL)=R(-θ)eAtSLR(θ)M(0)...(4). 
When the SL pulse is not applied [Fig. 1(b)], the magnetization is simply given by M(tSAT)=eA(ω,ω1,0)tSATM(0)...(5), 
where tSAT denotes a duration of saturation [Fig. 1(b)].  
 If we assume that the T1 and T2 values in the two pools are known, the parameters to be estimated (x) are 
reduced to kex (=kws+ksw) and M0

s/M0
w, i.e., x=[kex M0

s/M0
w]T. These parameters can be estimated from the z 

component of magnetization in pool w [Mz
w(x, t)] by use of the nonlinear lease-squares (NLSQ) method, i.e., 

x'=arg min Σt||Mz
w(x, t)||2...(6), where t corresponds to tSL and tSAT for cases with and without SL, respectively. It 

should be noted that kws and ksw can be calculated from kex as kws=kex/(1+M0
w/M0

s) and ksw=kex/(1+M0
s/M0

w), 
respectively, because it holds true that kwsM0

w=kswM0
s at equilibrium.  

 As illustrative examples, we assumed that tθ=200 μs, Ω=2000 Hz, ωw-ωs=2400 Hz, ω1=1000 Hz, T1
w=1.5 s, 

T2
w=60 ms, T1

s=0.77 s, and T2
s=33 ms in this study. Rician noise was added to Mz

w(x, t) in order to investigate 
the effect of statistical noise on the accuracy of parameter estimation. Furthermore, to quantitatively evaluate 
the accuracy of parameter estimates, the root-mean-square error (RMSE) and bias against the true values were 
calculated for kex and M0

s/M0
w across 100 simulations. The RMSE and bias were calculated from 

sqrt{mean[(x'/x-1)2]} and mean[|x'-x|/x], respectively, where x and x' denote the true and estimated parameter 
values, respectively. 
RESULTS AND DISCUSSION  
 Figure 2 shows the 3-dimensional plots of the magnetization in pool w with (left) and without SL (right), 
which were calculated from Eqs. (4) and (5), respectively. As shown in Fig. 2, the effect of SL is clearly 
visualized. Figures 3(a) and 3(b) show the RMSE values for kex and M0

s/M0
w as functions of SNR, respectively, 

while Figs. 4(a) and 4(b) show the bias values for kex and M0
s/M0

w, respectively. In these figures, closed and 
open circles represent cases with and without SL, respectively. As shown in Fig. 3, the RMSE value for 
M0

s/M0
w in the case with SL was smaller than that without SL, while the RMSE value for kex was almost the 

same. The bias in the case with SL was slightly smaller than that in the case without SL for both kex and 
M0

s/M0
w (Fig. 4).  

 In our method, matrix operation was used not only for solving the time-dependent Bloch equations but also for taking into account the relaxation and chemical 
exchange effects during RF-pulse irradiation. Although an ordinary differential equation (ODE) solver can also be used, the computation time was considerably reduced 
when using our method (by a factor of approximately 5000 compared to the ODE solver), indicating that our method is preferable to estimating parameters such as 
chemical exchange rates using the NLSQ method. In this study, we treated the 2-pool CEST model as an illustrative example. However, CEST agents often have more 
than one type of exchangeable proton. For such cases, it is necessary to expand the Bloch equations to multi-pool exchange models. Our method can easily be extended 
to multi-pool models by modifying the matrix A given by Eq. (2). 
CONCLUSION  
 We presented a simple and fast method for solving the time-dependent Bloch equations in CEST MRI with SL, and proposed a new method for quantifying chemical 
exchange rates from CEST MRI with and without SL using this method. Our results suggest that the CEST MRI with SL is more reliable than that without SL for 
quantifying parameters such as chemical exchange rates, and that our method will be useful and effective for this purpose. 
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