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Target Audience:  Researchers interested in chemical exchange saturation transfer (CEST) imaging. 

Purpose:  The CEST technique has shown great potential in the field of MR molecular imaging 1, where off-resonance RF irradiation pulse level (B1) should be chosen 
to optimize the specificity and/or sensitivity of the chemical exchange (CE) contrast. When targeted labile proton has high specificity in the Larmor frequency (such as 
in PARACEST studies), B1 can be adjusted to maximize the CE sensitivity (i.e., CE-based image contrast). To this end, Sun et al. have derived empirical analytical 
solutions describing CE contrast in the slow-exchange regime and optimized the CE contrast based on these solutions 2. But when several types of labile protons with 
similar Larmor frequencies but vastly different k values are present (such as endogenous amide, guanidine and amine protons in vivo), B1 can also be adjusted to 
selectively enhance the CE contrast from a specific type of labile proton (i.e., k-tuning). In this work, we derived simplified analytical solutions for B1 optimization of 
both k-specificity and CE sensitivity in the slow-exchange regime using a theoretical two-site exchange model with asymmetric population approximation 3, and 
compared the results with simulations of the Bloch-McConnell Equations. 

Methods:  Theoretical Model:  During off-resonance irradiation, the water magnetization relaxes to a steady state with rate constant R1ρ (=1/T1ρ), the spin-lattice 
relaxation rate in the rotating frame 4. From a two-site exchange model with asymmetric population approximation, R1ρ can be expressed as 3 
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and Ω is the offset of the irradiation frequency from water, ω1 =γ ⋅ B1, θ = arctan(ω1/Ω), p is the relative concentration of labile protons (assuming p << 1), δ is the 
chemical shift difference between the labile proton and water, and R1 and R2 are the intrinsic longitudinal and transverse relaxation rates of water, respectively 
(excluding CE effects). In the slow exchange regime where k/δ << 1, the CE effect is maximal for MTRasym (=[S(-δ)-S(δ)]/S0) with is very long irradiation duration 4. 
Assuming negligible CE effect at Ω = -δ, i.e, Rex(Ω =-δ) ≈ 0, the steady state MTRasym can be expressed as 
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In Eq. (2), the term (1+k2/ω1

2) represents the reciprocal of the saturation efficiency, which approaches a maximum value of one when ω1 >> k, and the term 
[1+R2ω1

2/(R1δ)2]2 represents the direct water saturation effect, which increases with water R2 and ω1. From Eq. (2), a condition of ∂MTRasym/∂k = 0 gives 
ktune = ω1,             (3) 

indicating that choice of ω1 tunes the CE contrast to a specific exchange rate (ktune) independent of other parameters such as R1 and R2. From ∂MTRasym/∂ω1 = 0 we can 
also get a normalized optimal ω1 which maximizes the CE sensitivity: 
 
                                                                                     
 
which depends on R1 and R2, as well as the ratio of k/δ. 

Simulations of Bloch-McConnell Equations:  MTRasym was simulated by Bloch-McConnell Equations, assuming two-pool exchange and δ = 5000 rad/s, R1 = 0.5 s-1, 
p = 0.0005, and an irradiation duration of 10 s. To evaluate the effect of k-tuning, MTRasym as a function of k was simulated for fixed ω1 (400 rad/s) at R2 values of 1, 5, 
and 20 s-1, and for fixed R2 values of either 1 or 20 s-1 at ω1 values of 80, 200, 400, 1000 and 3000 rad/s. To evaluate the effect of CE-sensitivity optimization, MTRasym 
as a function of ω1 was simulated for k = 400 s-1 with R2 values of 1, 5, and 20 s-1, and the results were compared with analytical solutions from Eq. (2). The accuracy of 
Eq. (4) was tested by simulating MTRasym for R2 values of 1, 5 and 20 s-1. MTRasym was also simulated for k between 5 and 1500 s-1 and ω1 between 50 and 2000 rad/s, 
and results for the optimal ω1 for maximal MTRasym were compared with analytical solutions from Eq. (4). 

Results and Discussion:  With ω1 fixed at 400 rad/s, simulations show ktune = 400 s-1 (MTRasym peak), which is independent of R2 values and consistent with results of 
Eq. (3) (Fig. A). As ω1 is varied, ktune changes accordingly, and MTRasym (CE contrast) is highly sensitive to R2 values (Fig. B versus Fig. C). Importantly, it should be 
noted that for labile protons with the same (or similar) Larmor frequency but different k values, a trade-off between k-specificity and optimal CE contrast may be 
required (i.e., selecting ω1 for optimal k-tuning may not give maximal MTRasym). For example, consider two labile protons (X and Y) with exchange rates kX = 80 s-1 and 
kY = 200 s-1, respectively. A pulse with ω1 = 80 rad/s tunes to labile proton X, but MTRasym is even higher for X with ω1 = 200 rad/s (Figs. B and C) which tunes to 
labile proton Y. Thus, this latter condition yields higher CE contrast, but lower specificity for labile proton X. Fig. D shows that for k = 400 s-1, MTRasym initially 
increases with ω1, then reaches a peak and decreases at higher ω1 values. The optimal ω1 for k = 400 s-1 decreases with an increase in R2 values, and MTRasym 
simulations are well described by Eq. (2). Simulations also show ω1, optimal increasing with k, and a good match to the solution from Eq. (4) for k/δ < 0.4 (Fig. E).  In the 
slow regime, this relationship along with estimates from Eq. (4) when R1 and R2 values are known allows estimation of k, an important target of CE studies. 5 

Conclusion:  Approximate analytical solutions for MTRasym have been derived from a theoretical model in the slow exchange regime, which agree well with 
simulations of the Bloch-McConnell Equations. These results should help guide the selection of B1 for k-specificity and CE-sensitivity optimization in CEST studies. 

Figure:  Simulation of Bloch-McConnell Equations shows that for ω1 = 400 rad/s, MTRasym peak at ktune = 400 s-1, independent of R2 values (A). There is a clear ktune 
dependence on ω1 (B and C) but MTRasym varies with R2. (D). Close agreement is seen for MTRasym as a function of ω1 for k = 400 s-1 calculated from Bloch-McConnell 
Equations vs. Eq. (2). (E). There is also a good match for ω1, optimal as a function of k value for maximal MTRasym calculated from Bloch-McConnell Equations vs. Eq. (4). 

References:  [1]. Ward and Balaban, JMR 143:79 (2000). [2]. Sun PZ et al., JMR 175:193 (2005). [3]. Trott and Palmer JMR 154:157 (2002). [4]. Jin, T et al., 
NeuroImage 59:1218 (2012). [5]. Sun PZ et al., JMR 202:155 (2010). 
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