Off-resonance irradiation power to optimize the CEST sensitivity versus the exchange rate-specificity

Tao Jin¹ and Seong-Gi Kim¹

¹Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States

Target Audience: Researchers interested in chemical exchange saturation transfer (CEST) imaging.

Purpose: The CEST technique has shown great potential in the field of MR molecular imaging ¹, where off-resonance RF irradiation pulse level (B₁) should be chosen to optimize the specificity and/or sensitivity of the chemical exchange (CE) contrast. When targeted labile proton has high specificity in the Larmor frequency (such as in PARACEST studies), B₁ can be adjusted to maximize the CE sensitivity (i.e., CE-based image contrast). To this end, Sun et al. have derived empirical analytical solutions describing CE contrast in the slow-exchange regime and optimized the CE contrast based on these solutions ². But when several types of labile protons with similar Larmor frequencies but vastly different *k* values are present (such as endogenous amide, guanidine and amine protons *in vivo*), B₁ can also be adjusted to selectively enhance the CE contrast from a specific type of labile proton (i.e., *k*-tuning). In this work, we derived simplified analytical solutions for B₁ optimization of both *k*-specificity and CE sensitivity in the slow-exchange regime using a theoretical two-site exchange model with asymmetric population approximation ³, and compared the results with simulations of the Bloch-McConnell Equations.

<u>Methods:</u> <u>Theoretical Model</u>: During off-resonance irradiation, the water magnetization relaxes to a steady state with rate constant $R_{1\rho}$ (=1/ $T_{1\rho}$), the spin-lattice relaxation rate in the rotating frame ⁴. From a two-site exchange model with asymmetric population approximation, $R_{1\rho}$ can be expressed as ³

$R_{1,0} = R_1 \cos^2 \theta + (R_2 + R_{ex}) \sin^2 \theta, \text{ where } R_{ex} \approx p \cdot k \cdot \delta^2 \cdot \left[(\delta - \Omega)^2 + \omega_1^2 + k^2 \right]^{-1},$

and Ω is the offset of the irradiation frequency from water, $\omega_1 = \gamma \cdot B_1$, $\theta = \arctan(\omega_l/\Omega)$, p is the relative concentration of labile protons (assuming $p \ll 1$), δ is the chemical shift difference between the labile proton and water, and R_1 and R_2 are the intrinsic longitudinal and transverse relaxation rates of water, respectively (excluding CE effects). In the slow exchange regime where $k/\delta \ll 1$, the CE effect is maximal for MTR_{asym} (=[S(-\delta)-S(\delta)]/S_0) with is very long irradiation duration ⁴. Assuming negligible CE effect at $\Omega = -\delta$, *i.e.*, $R_{ex}(\Omega = -\delta) \approx 0$, the steady state MTR_{asym} can be expressed as

$$MTR_{asym} \approx \frac{1}{1 + \frac{R_2}{R_1} \tan^2 \theta} - \frac{1}{1 + \frac{R_2 + R_{ex}(\delta)}{R_1} \tan^2 \theta} = \frac{1}{\left(1 + \frac{R_2 \omega_1^2}{R_1 \delta^2}\right) \cdot \left[1 + \frac{(R_2 + R_{ex}) \cdot \omega_1^2}{R_1 \delta^2}\right]} \cdot \frac{R_{ex} \omega_1^2}{R_1 \delta^2} \approx \frac{p \cdot k \cdot T_1}{p \cdot k \cdot T_1 + \left(1 + \frac{k^2}{\omega_1^2}\right) \cdot \left(1 + \frac{R_2 \omega_1^2}{R_1 \delta^2}\right)^2}$$
(2)

In Eq. (2), the term $(1+k^2/\omega_1^2)$ represents the reciprocal of the saturation efficiency, which approaches a maximum value of one when $\omega_1 \gg k$, and the term $[1+R_2\omega_1^2/(R_1\delta)^2]^2$ represents the direct water saturation effect, which increases with water R_2 and ω_1 . From Eq. (2), a condition of $\partial MTR_{asym}/\partial k = 0$ gives $k_{tune} = \omega_1$, (3)

indicating that choice of ω_1 tunes the CE contrast to a specific exchange rate (k_{tune}) independent of other parameters such as R_1 and R_2 . From $\partial MTR_{asym}/\partial \omega_1 = 0$ we can also get a normalized optimal ω_1 which maximizes the CE sensitivity:

$$\frac{\omega_{\text{Loptimal}}}{\delta} \approx \sqrt{\sqrt{\frac{R_1}{2R_2}} \cdot \frac{k}{\delta} - \frac{k^2}{4\delta^2} + \frac{k^3}{16\delta^3} \cdot \sqrt{\frac{R_2}{2R_1}}} \qquad (4)$$

which depends on R_1 and R_2 , as well as the ratio of k/δ .

<u>Simulations of Bloch-McConnell Equations</u>: MTR_{asym} was simulated by Bloch-McConnell Equations, assuming two-pool exchange and $\delta = 5000$ rad/s, $R_1 = 0.5 \text{ s}^{-1}$, p = 0.0005, and an irradiation duration of 10 s. To evaluate the effect of *k*-tuning, MTR_{asym} as a function of *k* was simulated for fixed ω_1 (400 rad/s) at R_2 values of 1, 5, and 20 s⁻¹, and for fixed R_2 values of either 1 or 20 s⁻¹ at ω_1 values of 80, 200, 400, 1000 and 3000 rad/s. To evaluate the effect of CE-sensitivity optimization, MTR_{asym} as a function of ω_1 was simulated for $k = 400 \text{ s}^{-1}$ with R_2 values of 1, 5, and 20 s⁻¹, and the results were compared with analytical solutions from Eq. (2). The accuracy of Eq. (4) was tested by simulating MTR_{asym} for R_2 values of 1, 5 and 20 s⁻¹. MTR_{asym} was also simulated for *k* between 5 and 1500 s⁻¹ and ω_1 between 50 and 2000 rad/s, and results for the optimal ω_1 for maximal MTR_{asym} were compared with analytical solutions from Eq. (4).

Results and Discussion: With ω_1 fixed at 400 rad/s, simulations show $k_{tune} = 400 \text{ s}^{-1}$ (MTR_{asym} peak), which is independent of R_2 values and consistent with results of Eq. (3) (Fig. A). As ω_1 is varied, k_{tune} changes accordingly, and MTR_{asym} (CE contrast) is highly sensitive to R_2 values (Fig. B versus Fig. C). Importantly, it should be noted that for labile protons with the same (or similar) Larmor frequency but different *k* values, a trade-off between *k*-specificity and optimal CE contrast may be required (*i.e.*, selecting ω_1 for optimal *k*-tuning may not give maximal MTR_{asym}). For example, consider two labile protons (X and Y) with exchange rates $k_X = 80 \text{ s}^{-1}$ and $k_Y = 200 \text{ s}^{-1}$, respectively. A pulse with $\omega_1 = 80$ rad/s tunes to labile proton X, but MTR_{asym} is even higher for X with $\omega_1 = 200 \text{ rad/s}$ (Figs. B and C) which tunes to labile proton Y. Thus, this latter condition yields higher CE contrast, but lower specificity for labile proton X. Fig. D shows that for $k = 400 \text{ s}^{-1}$, MTR_{asym} simulations are well described by Eq. (2). Simulations also show $\omega_{1, optimal}$ increasing with *k*, and a good match to the solution from Eq. (4) for $k/\delta < 0.4$ (Fig. E). In the slow regime, this relationship along with estimates from Eq. (4) when R_1 and R_2 values are known allows estimation of *k*, an important target of CE studies.

<u>Conclusion</u>: Approximate analytical solutions for MTR_{asym} have been derived from a theoretical model in the slow exchange regime, which agree well with simulations of the Bloch-McConnell Equations. These results should help guide the selection of B_1 for k-specificity and CE-sensitivity optimization in CEST studies.

Figure: Simulation of Bloch-McConnell Equations shows that for $\omega_1 = 400 \text{ rad/s}$, MTR_{asym} peak at $k_{\text{tune}} = 400 \text{ s}^{-1}$, independent of R_2 values (**A**). There is a clear k_{tune} dependence on ω_1 (**B** and **C**) but MTR_{asym} varies with R_2 . (**D**). Close agreement is seen for MTR_{asym} as a function of ω_1 for $k = 400 \text{ s}^{-1}$ calculated from Bloch-McConnell Equations vs. Eq. (2). (**E**). There is also a good match for $\omega_{1, \text{optimal}}$ as a function of k value for maximal MTR_{asym} calculated from Bloch-McConnell Equations vs. Eq. (2). (**E**). There is also a good match for $\omega_{1, \text{optimal}}$ as a function of k value for maximal MTR_{asym} calculated from Bloch-McConnell Equations vs. Eq. (4). **References:** [1]. Ward and Balaban, JMR 143:79 (2000). [2]. Sun PZ et al., JMR 175:193 (2005). [3]. Trott and Palmer JMR 154:157 (2002). [4]. Jin, T et al., NeuroImage 59:1218 (2012). [5]. Sun PZ et al., JMR 202:155 (2010).