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Introduction: Frequency-dependent spinlock (SL) experiments are able to detect the exchange process between proton pools of different chemical 
environments. Knowledge about this process can be exploited to image in vivo levels of metabolites or pH distributions [1,2,3]. Continuous wave (cw) 
experiments can be described in terms of analytical expressions [4,5] and therefore yield a straight-forward quantification method. However, due to SAR 
constraints in clinical MR scanners, pulsed sequences are required that suffer from the lack of direct transferability to the cw-type experiments. Several 
approaches have tried to relate pulsed and cw sequences by introducing effective parameters [6,7]. This study gives an analytical theory of transient and 
steady-state Z-spectra obtained by pulsed saturation based on the eigenspace approach for the 
cw case [8]. 
 

Theory: We consider two pools of protons resonating at different resonance frequencies (pool A 
and pool B) that are in chemical-exchange with each other. The pools are characterized by the 
their relaxation rates ܴଵ௠ and ܴଶ௠, their exchange rates ݇௠,  their specific Larmor frequencies ߜ௠(݉	 = ,ܣ ݂ and the fraction of their thermal magnetizations (ܤ = ெబಳெబಲ. It is common to call the 

water pool A, and to set its Larmor frequency ߜ஺ to 0.  
The pulsed-SL experiment is described by a sequence of delay-pulse modules with delay time td, 
pulse width tp and duty-cycle DC. We assume monoexponential decay towards the cw-steady 
state with relaxation rate ܴଵఘ = ܴ௘௙௙ + ܴ௘௫ where ܴ௘௙௙ is the effective decay rate resulting from the 
tilted frame of reference and ܴ௘௫ the exchange-dependent part also contributing to the total decay 
rate. During the pause, as a first approximation, only ܴଵ relaxation is considered neglecting any 
magnetization transfer. A recursive formula can be derived relating the ݊-th pause-pulse-module to its predecessor. Using the sum formula for the 

geometric series we obtain the explicit formula for the z-component of the magnetization 

=:ݖ) (௭ܯ–଴ܯ) ଴ൗܯ ) after a pulse train with	݊ delay-pulse modules: ݖ௡ = ߙ ଵିఉ೙ଵିఉ + ݐ)ݖ௡ߚ = 0) (eq. 1) with 

constants	ߙ and	ߚ < 1. Introducing the steady-state-solution ܼ௣௨௟௦௘ௗௌௌ  for the pulsed experiment and 
rearranging eq. 1 the dynamics is described by the exponential law ܼ௡ 	= ൫1 − ܼ௦௦௣௨௟௦௘ௗ൯݁	ିோభഐ೛ೠ೗ೞ೐೏௧ೞೌ೟ + ܼ௦௦௣௨௟௦௘ௗ. (eq. 2) 
By introducing the total saturation time ݐ௦௔௧  given by ݐ௦௔௧ = ௣ݐ)݊ + ௗ)  and the new effective relaxation rate ܴଵఘ௣௨௟௦௘ௗݐ ≔ ܥܦ ∗ ܴଵఘ + (1 − (ܥܦ ∗ ܴଵ  we acknowledge the strong similarity to the cw-SL. Using additional 
assumptions about the state of pool B after each RF pulse we could derive a correction term ߦ, that 
extends the validity of eq. 2 towards a regime of slower exchange: 

 ܼ௡ 	= ൫1 − ܼ௦௦௣௨௟௦௘ௗ൯݁	ି(ோభഐ೛ೠ೗ೞ೐೏ା ౢ౤഍೟೛శ೟೏)௧ೞೌ೟ + ܼ௦௦௣௨௟௦௘ௗ. (eq. 3) 
Determining the effective relaxation rate ܴଵఘ௣௨௟௦௘ௗ in the pulsed SL-experiment by varying the saturation time close to the resonance of pool B (∆߱ ߱∆) and subtracting by the corresponding value symmetric to the water resonance	௕)ߜ= =  ௕), where ܴ௘௫ is assumed to be negligible, yieldsߜ−

 ܴଵఘ,࢙ࢋ࢘ି࢔࢕௣௨௟௦௘ௗ − ܴଵఘ,࢙ࢋ࢘ିࢌࢌ࢕௣௨௟௦௘ௗ = Rୣ୶ ∗ DC	. This term can be approximated [6] by Rୣ୶ ≈ ௙௞್ఠభమఠభమା௞್(௞್ାோమಳ) (approx. 1) or by Rୣ୶ ≈ ݇௔ if ߱ଵ ≫	݇஻஺ (linear approx.).  
 

Materials & Methods: Calculations of z-spectra were performed by fully numerical simulation of the six coupled Bloch-McConnell-equations using 
typical concentrations and relaxation rates for a creatine phantom. The SL-pulse train was realised by subsequent simulation of RF irradiation with 
constant ܤଵ for ݐ௣ = tୢ = 100	ms. The additional flipping of the magnetization into the effective frame was simulated by instantaneous rotation. 
Simulations were performed using the following parameters: ܴଵ஺ = ܴଵ஻ = ଶ஺ܴ ;ݖܪ	0.3 = ܴଶ஻ = ௣ݐ ;ݖܪ	3 = ௗݐ = ݂;ݏ݉	100 = ଴ܤ ;0.01 = ଵܤ ;ܶ	3 = 0.5	μܶ; ߜ஻ =  ݉݌݌	1.8
As a model solution, creatine monohydrate (126 mM) in PBS-buffer including 0.5% agarose and sodium acid was 
used. Measurements were performed on a 3T clinical scanner. 
 

Results & Discussion: Fig. 1 shows simulated pulsed-SL spectra for several pulse train lengths and 
the steady state solution of the system. With full knowledge about the steady state, the transient 
spectra are well described by the exponential law. Applying a trust-region-fitting algorithm gives the 
exponent for each of the offset values from which - assuming full knowledge about the correction term ߦ and the pulse train parameters – the maximum (Fig. 2) and the general shape of ܴ௘௫ can be 
estimated correctly. Fig. 3 shows experimentally determined values for ܴଵఘ௣௨௟௦௘ௗ of a creatine solution as 
a function of the frequency offset. The values are ROI averaged and fit the analytical expression. By 
an asymmetry analysis the term ܴ௘௫ was isolated and a value ݇஺஻ =  derived with the linear ݖܪ	0.25
approximation, which matches to the value determined by WEX-spectroscopy ݇஺஻ =  .[10] ݖܪ	0.26
 

Conclusion: We gave an analytical expression which predicts the Z-spectra of pulsed CEST as function of the pulse train parameters ݐ ,ܥܦ௣, ݐௗ, ݊ and ܤଵ instead of an effective ܤଵ. Simulations show that the proposed analytical theory allows determination of the chemical-exchange-dependent relaxation 
rate for clinically feasible saturation schemes (pulsed-SL sequences, 3T) from which parameters characterizing the exchange process can be derived; 
even a direct quantification of ݇௔ = ݂	݇௕ for slow exchange rates is possible. Due to the high degree of similarity between chemical-exchange-dependent 
saturation transfer (CEST) and SL this theory can be transferred directly to pulsed-CEST experiments and can further be utilized to optimize pulsed-
SL/CEST sequences for chemical-exchange imaging contrast and quantification. 
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