## Quantitative Evaluation of the Exchange Time and T<sub>2</sub> Associated with an Inhomogeneous Component using Inhomogeneous Magnetization Transfer Imaging

Gopal Varma<sup>1</sup>, Fotini Kourtelidis<sup>1</sup>, and David C Alsop<sup>1</sup>

<sup>1</sup>Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

**Introduction** The presence and composition of white matter (WM) is of interest, particularly for the study of degenerative disease. The proportion of myelin in WM, which is found to degrade in diseases such as multiple sclerosis, has been correlated with the results from quantitative magnetization transfer (MT) [1]. This is based on the macromolecular pool of phospholipids associated with myelin and its interaction with the bulk water pool. The phospholipids in myelin form a bilayer that results in restricted motion and has shown signs of inhomogeneous broadening [2-3]. An inhomogeneous MT (IHMT) sequence showed greater contrast from WM [4], presumably due to myelin selectivity. This work attempts to provide a more quantitative treatise of the IHMT effect and its application to phantoms and in vivo. In particular, the exchange time,  $\tau_{ex}$  of signal associated with an inhomogeneous component is determined, and consequently the transverse relaxation time  $T_2$  as determined by saturation. In vitro experiments are conducted on hair conditioner, which is also presumed to show inhomogeneous broadening as a result of its lamellar liquid crystal design [5].

**Theory** The IHMT sequence is based on a saturation scheme at a positive, negative, and combined offset frequency, in which the offset alternates between the two. Using a 2 pool model for exchange in which irradiation at the positive offset is assumed to be disconnected from that at the negative offset, the IHMT effect is modeled based on the assumption of saturation of a single line. The magnetization change following irradiation at the positive offset is given by (1), whilst during periods of negative offset saturation the magnetization (2) recovers on a timescale  $R_{ex}=1/\tau_{ex}$ , assuming  $R_{ex}>R_I$ . In relation to the alternating offset scheme associated with IHMT (Fig.1a), the average magnetization,  $M_{av}$  is thus given by the integral of  $M_{ON}$  (3) from t=0 to t=w and  $M_{OFF}$  (4) from t=w to t=2w, divided by 2w, where  $M_{oFF}$ , and w is the saturation period. The IHMT ratio (IHMTR) is calculated as  $(M_{ON}+M_{OFF}-2M_{av})/M_0$  (5). Adopting a continuous wave (CW) scheme to investigate saturation the average magnetization,  $M_{av}$  is now given by (6) so that IHMT equals  $M_0T_2^2 \omega_1^4/((R_{ex} + T_2\omega_1^2)(2R_{ex} + T_2\omega_1^2))$  (7).

**Methods** Phantoms consisted of hair conditioner bottles (TRESemme and Suave) and volunteers (V1-5): 4 females and 1 male (ages 21-27) were scanned with 2D single-shot EPI (FOV=25x25cm<sup>2</sup>; matrix=128x128; NEX≥8; TE/TR=24/2000ms) on a 3T GE scanner using an 8-channel head coil. A pulsed saturation scheme consisted of a block of 1.2ms with 0.5ms saturation, repeated for 500ms. To elucidate  $\tau_{ex}$  using (1-5), the following values of w were applied: 1.2, 2.4, 3.6, 4.8, 9.6, 14.4, 24 and 43.2ms and fit to (5). The CW saturation was achieved with a 120ms trapezoid waveform, with sinusoidal modulation for the alternating offset acquisition. The value for  $\omega_1$  was varied via  $B_{1,peak}$  from 20 to 100 in 20mG steps. A fit of the signal variation to (7) provided an estimate of  $T_2$ , using  $R_{ex}=1/\tau_{ex}$ . A  $B_1$  map was also acquired based on a dual FA acquisition (60 and 120°). Images were masked based on >10% of the maximum signal intensity and maps were further masked based on coefficients of determination, R<sup>2</sup>>0.8.

Results In vitro, the data from varied values of w with pulsed saturation experiments show good correspondence using a least squares fit (Fig.1b). Both data and the fit show decay in the IHMTR associated with  $\tau_{ex}$ . The values for  $\tau_{ex}$  from the fit are 11.8 and 14.8ms for the TRESemme and Suave respectively, and are used in estimation of the  $T_2$  using (7) and data from the CW experiments (Fig.3d). The IHMTR shows greater contrast from WM than the MTR (Figs.2a-b). A shorter  $\tau_{ex}$  of ~6ms is seen in vivo, with little sign of spatial variation (Fig.2c). Again, use of this value allows estimate of  $T_2$  from the CW data (Fig.3a). Following correction based on the  $B_1$ , a spatial variation is diminished and an estimate for  $T_2$ of 200µs is found (Figs.3c-d).

**Discussion and Conclusions** An inference as to the exchange time,  $\tau_{ex}$  and  $T_2$  associated with an inhomogeneous component is elucidated using IHMT. Distinct values are found from hair conditioner phantoms and in vivo. Application to pathologies might prove insight into diseases involved with demyelination.



involved with Map of  $\tau_{ex}$ . d) Box plot of  $\tau_{ex}$  quartile values. box plot of  $T_2$  quartile values from phantoms/in vivo.

References: [1] Tozer et al. MRM 53(2005)1415-22; [2] Chan et al. Nature 231(1971)110-2; [3] Seiter et al. JACS 95(1973)7541-53; [4] Alsop et al. Proc Intl Soc Mag Reson Med 12(2004)2324; [5] Swanson et al. Proc Intl Soc Mag Reson Med 20(2012)2344

$$\frac{\partial M_{ON}}{\partial t} = M_0 R_{ex} - M \left( R_{ex} + \frac{\omega_1^2 T_2}{1 + \Delta^2 T^2} \right) \tag{1}$$

$$\frac{\partial M_{OFF}}{\partial t} = M_0 R_{ex} - M R_{ex}$$
(2)

$$M_{ON} = M_1 e^{-R_{cal}^{\prime}} + M_0^{\prime} \left( 1 - e^{-R_{cal}^{\prime}} \right)$$
(3)

$$M_{OFF} = \left(M_1 e^{-R_{ct} w} + M_0 \left(1 - e^{-R_{ct} w}\right)\right) e^{-(t-w)R_{ct}} + M_0 \left(1 - e^{-(t-w)R_1}\right)$$
(4)

a) w = t

$$M_{av} = \frac{M_0 R_{ex}}{\left(R_{ex} + \frac{\frac{\omega_1^2}{2} T_2}{1 + \Delta^2 T_2^2}\right)}$$
(6)

