Origin of B 0 orientation dependent $\mathrm{R} 2^{*}\left(=1 / \mathrm{T} 2^{*}\right)$ in white matter: magic angle effect vs. magnetic susceptibility

${ }^{l}$ Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
Introduction: In a certain tissue with anisotropic microstructures, relaxation rates (R_{2} and R_{2}^{*}) are modulated by the orientation of the anisotropic microstructures relative to B_{0}. One of these phenomena is a magic angle effect, which is observed at tendons, ligaments, and menisci [1,2]. The effect exhibits a decrease in R_{2} when the anisotropic microstructure is orientated at specific angles $\left(R_{2}(\theta)=R_{2, \text { orient indep }}+\left(3 \cos ^{2} \theta-1\right)^{2}\right.$ (Eq. 1)) relative to B_{0} (Fig. 1A). Another mechanism is the magnetic susceptibility, which affects R_{2}^{*} [3]. In white matter of the brain, axons and myelin sheaths form cylindrical structures and magnetic susceptibility difference exists between myelin and surrounding water [4,5]. This angular dependency has been shown to change as follows: $\mathrm{R}_{2}^{*}(\theta)=\mathrm{R}_{2, \text { orient indep }}^{*}+c_{\text {iso }} \cdot \cos 2 \theta+c_{\text {ansio }} \cdot \cos 4 \theta$, (Eq. 2; Fig. 1C) [6]. The second term is from isotropic susceptibility (Fig. 1B) whereas the last term is from anisotropic susceptibility, which was suggested to originate from myelin [7]. The same orientation dependency as in Eq. 2 can be generated by the combination of isotropic susceptibility and magic angle effects (Fig. 1D). Hence, in R_{2}^{*} measurement, it is difficult to confirm whether the magic angle effect (with isotropic susceptibility) or the susceptibility effect (with susceptibility anisotropy) is the primary contributor of R_{2}^{*} orientation dependency (Figs. 1 C and 1 D). On the other hand in R_{2} measurement using SE , magnetic susceptibility effect is minimized while the magic angle effect is sustained in the same magnitude. In order to identify the origin of R_{2}^{*} orientation dependency, we have performed an experiment on fixed human brain specimens to estimate the contribution of the magic angle and susceptibility effects. Both white matter (corpus callosum) and deep gray matter (basal ganglia) was investigated.
Methods: Two coronal slabs of formalin-fixed human brain specimens were used for the experiments. One of the slabs was used for the orientation dependent R_{2} and R_{2}^{*} measurements in corpus callosum (Fig. 2A) and the other for the orientation dependent R_{2}^{*} measurements in basal ganglia (Fig. 3A). To measure the orientation dependence, the specimen was scanned at 12 different orientations, each rotated approximately by 15°. For R_{2} estimation, a 2D SE sequence with a single echo was used. The scan parameters were: resolution $=0.75 \times 0.75 \times 1 \mathrm{~mm}^{3}$, matrix size $=128 \times 128 \times 20$, and $\mathrm{TR}=2.5 \mathrm{~s}$. The single echo acquisition was repeated 7 times with different TEs (= 9:5:39 ms). For R_{2}^{*} estimation, a 3D multi-echo GRE sequence was used. The same resolution and matrix size were used as in the SE sequence. Other parameters were: $\mathrm{TR}=100 \mathrm{~ms}$, flip angle $=15^{\circ}$ and $\mathrm{TE}=4: 5: 39 \mathrm{~ms}$ (8 echoes). After acquisition, both SE and GRE, were aligned to the first orientation image of the SE data. The voxel-wise R_{2} and R_{2}^{*} values were estimated by a weighted least-square fit. For each angle, the averaged R_{2} and R_{2}^{*} values and its standard deviation within a ROI were calculated to generate orientation dependent curves. These curves were then fitted to the suscep-aniso model $\left(\mathrm{M}_{\text {suscep-aniso }}(\theta)=\mathrm{R}_{2, \text { orient indep }}^{*}+c_{\text {iso }}\right.$. $\left.\cos 2 \theta+c_{\text {ansio }} \cdot \cos 4 \theta\right)$ and the magic-iso model ($\mathrm{M}_{\text {magic-iso }}(\theta)=\mathrm{R}_{2, \text { orient indep }}^{*}+c_{m}$. $\left.\left(3 \cos ^{2} \theta-1\right)^{2}+c_{\text {iso }} \cdot \cos 2 \theta\right)$ to calculate the goodness of fit of each model. In the magiciso model, the contribution of orientation dependent R_{2} from the magic angle effect was expected to stay the same in the R_{2}^{*} measurement since R_{2}^{*} is sum of R_{2} and R_{2}^{\prime}. As a result, the regression result of the magic angle regressor obtained from the R_{2}^{*} measurement was removed from the R_{2} curve of the magic-iso model. After that, an adjusted R^{2} values were

Fig.2: (A) ROIs, (B and C) R R_{2}^{*} measurements and model-fitted curves, (D and E) R_{2} measurements and model-fitted curves calculated to estimate goodness of fit in each model. For basal ganglia specimen, only $\mathrm{R}_{2}{ }^{*}$

Fig.3: (A) ROI, (B) R_{2}^{*} curves in basal ganglia was measured as it did not show any orientation dependency (Fig.3B).
Results: Corpus callsom: The R_{2}^{*} curves (Figs. 2 B and 2 C) clearly demonstrate B_{0} orientation dependence. They show much larger signal variations than the R_{2} curves in Figs. 2D and 2E suggesting the susceptibility effect is the primary origin of the contrast. The maximum R_{2}^{*} measurements were observed when the fibers were perpendicular to $\mathrm{B}_{0}\left(66.9 \pm 1.8 \mathrm{~Hz}\right.$ at 85° in ROI1; $64.8 \pm 2.1 \mathrm{~Hz}$ at 93° in ROI2) whereas much lower R_{2}^{*} values were observed when the fiber orientations were parallel to $\mathrm{B}_{0}\left(58.8 \pm 1.2 \mathrm{~Hz}\right.$ at 160° in ROI1; $57.6 \pm 1.8 \mathrm{~Hz}$ at 162° in ROI2). When the two models, the suscep-aniso model and the magic-iso model, were fitted to the R_{2}^{*} curves, the adjusted R^{2} showed the same results $\left(R^{2}=0.96\right.$ in ROI1 and 0.97 in ROI2). On the other hand, when the two models were fitted to the R_{2} curves, much reduced adjusted R^{2} values were found in the magic-iso model (0.42 in ROI1 and 0.42 in ROI2) as compared to the suscep-aniso model (0.77 in ROI1 and 0.91 in ROI2) (Figs. 2D and 2E). These results suggest that the suscep-aniso model better explains the orientation dependent R_{2}^{*} and R_{2} than the magic-iso model. Basal ganglia: Basal ganglia showed no orientation dependency that can be explained by the models ($\mathrm{R}^{2}=0.0$).
Discussion and Conclusion: In this study, we investigated the effects of magic angle and susceptibility on R_{2}^{*} and R_{2}. The relative orientation between white matter fibers and B_{0} predominately affects R_{2}^{*} as compared to R_{2}, suggesting that the primary origin of the contrast is magnetic susceptibility. The orientation dependency in R_{2} was better explained by the susceptibility anisotropy model. The R_{2}^{*} values in basal ganglia show there is no orientation dependence in deep gray matter. These results indicate that myelin is a primary source for R_{2}^{*} contrast because of its highly oriented structure and large susceptibility value.
References: [1] Chappell, AJNR,2004 [2] Fullerton, Radiology, 1985 [3] Yablonskiy, MRM, 1994 [4] Liu, NeuroImage, 2011 [5] Lee, NeuroImage, 2012 [6] Lee, Neuroimage, 2011 [7] Li, Neuroimage,2012

