
Fig3: (A) Dd dependences of Δχm1-3, (B,C,D) blowups of A. 
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Introduction: Quantitative Susceptibility Mapping (QSM) provides a distribution of tissue magnetic susceptibility differences by solving an inverse 
problem of perturbed static magnetic field. The perturbed magnetic field can be approximated in first order by a spatial convolution of the magnetic 
susceptibility distribution with a spatial unit dipole field. The dipole field decays with the cube of the distance (∝r-3) 
but its effect on the magnetic field becomes a slow decaying function of the distance (∝r-1) since larger volume 
(4πr2Δr) has to be included into calculation at longer distance. Therefore, the inverse problem has to be solved in 
infinite range although measured magnetic field is limited in FOV. To limit the calculation within FOV, various 
methods for background magnetic field removal were proposed [1-3]. Even after the inverse problem is restricted 
within the FOV, it is a severe burden for a computer to deconvolve the susceptibility distribution with the long 
ranged spatial dipole field in the spatial domain. On the other hand, near its origin the dipole field becomes larger 
and changes very much within a short distance. These can be understood by the fact that the magic angle cones of 
the dipole field extend from the origin and the field value changes its sign across the cone. Therefore, a digitally 
sampled spatial dipole field does not satisfy Laplace’s equation, though continuous one does. This difference 
between the continuous field and the digitally sampled one produces errors in the deconvolving process. In this study, 
we performed numerical simulations taking into account partial volume effects, and we found the minimum size of 
the dipole field for the deconvolution and compared susceptibility distributions by using dipole fields with various 
oversampling factors.  
 
Methods 
Relative magnetic field difference including partial volume effects: A 3D Shepp-Logan 
phantom was created at the matrix size of (32×7)3. The susceptibility values (χi) of prolate 
spheroids were set to 0.3, 0.2, 0.2, 0.1, and 1 ppm, and the background was zero (Fig.1). A 
relative magnetic field difference (δB) was calculated by convolving with the spatial unit dipole 
field (31×7)3. Then δB in the regions corresponding to the shell (1ppm, bone) and the 
background (0ppm, air) was set to 0 so as to simulate MRI measurements. The δB distribution 
was downscaled to (32)3 by averaging every (7)3 voxels and added a white Gaussian noise to 
have SNR = 20. 
Background field removal: The filtering using the spherical mean value property 
of harmonic functions was performed on the input δB with a sphere of diameter 9 
voxels. After removing the background, the only region of 5 voxels inside from 
the measured δB was extracted for later processing of QSM.  
Susceptibility estimation: Since our numerical phantom had no susceptibility 
anisotropy, we employed the multiple orientation method [4] to solve the inverse 
problem of the measured δB distribution. The δB distributions of three different 
angles (0°, 30°, and 60°) on the slice plane between the phantom and the main 
magnetic field were calculated. In order to estimate the susceptibility distribution 
in the spatial domain, the dipole fields with different diameters (Dd = 5-27 
voxels) and with 4 different oversampling factors (nos = 1, 3, 5, 7) were used. For 
each prolate spheroid, mean susceptibility (χmi) and its SD were calculated only 
in the region corresponding to the homogeneous part of the phantom and the 
relative mean susceptibilities to χm4 (Δχmi = χmi - χm4) were used for evaluation. 
Oversampled dipole field: Each voxel was divided into nos

 3 isocubic subvoxels 
and the dipole field at each subvoxel was averaged within the voxel to be the oversampled dipole field of the nos oversampling factor.  
 
Results and Discussion: In Fig2, the calculated susceptibility distributions are shown and no large streaking artifact exists. Dd dependences of Δχm1-3 
with different nos are shown in Fig3A. The Δχm1-3 decrease as Dd becomes larger and reach constant values around Dd = 17, though Δχm3 shows a 
different dependence and an overestimated value. Since the region3 has the smallest area (Fig1), fewer voxels may cause this deviation but this is left 
for later study. Therefore, Dd can be restricted to 21 with enough accuracy (differences of Δχm1-3 from χ1-3-- χ4: ~ 10-9, SDs of χm1-3: ~ 10-8). In 
Fig3B-D, differences of Δχm1-3 between the oversampling scales nos above Dd = 15 are shown. Δχm1-3 with nos = 3, 5, 7 show almost same values. This 
can be explained by that smaller subvoxel contributions were averaged out at the same size of voxel. Δχm1-3 with nos = 3, 5, 7 are higher than the nos = 
1 values and Δχm1,2 with higher nos are closer to the true values. Since the dipole field with nos ≥ 3 has smaller absolute value near its origin than one 
with nos = 1, this difference may enhance calculated susceptibilities.  
 
Conclusion: The diameter Dd = 21voxels of the spatial unit dipole field is sufficient for estimating a susceptibility distribution. The oversampled 
spatial unit dipole field (nos = 3) is sufficient for observing effects on the susceptibility estimation and its validity needs further study. 
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Fig1: Shepp-Logan phantom 
((32×7)3, z=113, χ1:0.3ppm, 
 χ2, χ3:0.2ppm, χ4:0.1ppm, 
 shell:1ppm, BG:0ppm) 
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Fig2: comparison of susceptibility estimations 
(z=17, Dd =27, A: nos = 1, B: nos = 3) 
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