## T<sub>1</sub> Mapping: Should We Agree To Disagree?

Mathieu Boudreau<sup>1</sup>, Nikola Stikov<sup>1</sup>, and G. Bruce Pike<sup>1</sup>

<sup>1</sup>Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

**INTRODUCTION:** The longitudinal relaxation time  $T_1$  is an important MR biomarker for characterizing tissue, and an integral part of many quantitative MRI protocols<sup>1</sup> (e.g. quantitative magnetization transfer). A recent study<sup>2</sup> reported that three commonly used methods for  $T_1$  mapping (Inversion Recovery<sup>3</sup> (IR), Look-Locker<sup>4</sup> (LL), Variable Flip Angle<sup>5</sup> (VFA)) measure similar  $T_1$  values in phantoms, but exhibit significant disagreement *in vivo* (Fig. 1). In this work we report simulations demonstrating that inaccuracies in B<sub>1</sub> mapping and incomplete spoiling could explain the  $T_1$  variations observed *in vivo*.

**METHODS:** Bloch simulations were implemented using the Matlab software package (MATLAB2011a, The Mathworks Inc.) and were based on 100 spin isochromats with true  $T_1/T_2$  values of 825.5/100 ms. The  $T_1$  value corresponds



**Figure 1:** Single slice  $T_1$  maps (IR, LL, VFA) of a healthy volunteer in a single session<sup>2</sup>.

to the mode of the white matter (WM) values reported in a recent study using  $IR^2$  at 3 T. The IR pulse sequence used TI = 30, 530, 1030, 1530 ms and TR/TE = 1550/11 ms. Steady state was ensured by repeating the sequence 200 times. The nominal inversion and saturation pulse flip angles were  $180^{\circ}/90^{\circ}$ . The timing of the LL sequence was identical to the IR, with 5° excitation pulses. The VFA sequence used four nominal flip angles of 3°, 10, 20°, 30°, RF phase increment =  $117^{\circ}$ , TR/TE = 15/3.5 ms. The nominal flip angles were scaled with experimental whole brain B<sub>1</sub> data (actual flip angle method<sup>6</sup>) from a healthy subject at 3 T; the median B<sub>1</sub> scaling factor observed over the whole brain was 0.89. Prior to each pulse for VFA and following the inversion pulses in IR and LL, imperfect spoiling was simulated by dephasing the spins 80-100% of a  $2\pi$  fully dephased state. Prior to fitting, to account for inaccuracies in B<sub>1</sub> mapping, we scaled the flip angle from 0.9 to 1.1 of its true value (flip angle error factor). *In vivo* data from 10 healthy subjects on a 3 T Siemens Tim Trio using identical acquisition parameters as described above was compared with these simulations.

**RESULTS:** Figure 2 shows the relationship between the fitted  $T_1$  values and a range of flip angle variations for IR, LL and VFA using a partial dephasing factor of 0.9. Figure 3 shows the relationship between the fitted  $T_1$  values and the partial dephasing factors using a flip angle underestimation of 0.95. The black dotted lines in Figs. 2 and 3 indicate the simulation parameters used to generate the data in Fig. 4, which shows a comparison between the mode WM  $T_1$  and the simulated  $T_1$  values.





**Figure 3:** The relationship between fitted  $T_1$ and partial dephasing factor for IR, LL and VFA for a flip angle error factor of 0.95. The vertical line indicates where the simulation parameters for Fig. 2 and Fig. 3 are identical.

**Figure 4:** Comparison between the mode WM  $T_1$  measured in 10 healthy subjects<sup>2</sup>, and simulations with similar parameters. The simulation values correspond to parameters represented by the vertical dashed line in Figs. 2 and 3.

**DISCUSSION:** The bar graph in Fig. 4 shows that the simulations follows a similar trend in  $T_1$  values compared to the *in vivo* WM  $T_1$ . Overall, simulations suggest that LL typically underestimated  $T_1$ , and VFA overestimated  $T_1$ . For all the simulated parameters,  $T_1$  measured with IR is very stable and only slightly deviates from the true  $T_1$ . Error in  $B_1$  mapping has been shown<sup>7</sup> to be sensitive to factors such as RF pulse shape, slice-select gradients and  $B_0$  inhomogeneities. Incomplete or variable dephasing could result from factors like diffusion anisotropy in WM tracts<sup>8</sup>, which could explain the agreement between  $T_1$  methods in phantoms but not *in vivo*<sup>2</sup>. Our simulations did not account for magnetization transfer effects, which have also been shown to cause  $T_1$  map inaccuracies in VFA<sup>9</sup>. Including MT in VFA leads to an increase in fitted  $T_1$  values, hence worsening the predicted disagreement between VFA and IR.

**CONCLUSION:** Our simulations predict a systematic bias between the three most common  $T_1$  mapping techniques due to inaccurate  $B_1$  mapping and/or spoiling, and these same trends are observed *in vivo*. We observe that  $T_1$  is underestimated with LL, overestimated with VFA, and very accurate with IR (if a proper fitting model is used<sup>3</sup>). This work highlights the importance of accurate  $B_1$  mapping, robust spoiling methods, and proper calibration with the IR gold standard. As these effects can be site/scanner specific, we strongly suggest acquiring at least one gold standard IR map, in addition to any other  $T_1$  mapping protocols used in the studies, to account for the  $T_1$  bias. This is particularly important to consider when using  $T_1$  maps with other quantitative techniques, as the  $T_1$  bias could have a significant effect on other parameters of the quantitative model.

**REFERENCES:** [1] Tofts P. qMRI of the brain (2004) [2] Stikov et al. Proc. of ISMRM (2012) [3] Barral et al. MRM 64(4): 1057-1067 (2010) [4] Brix et al. MRI 8(4): 351-356 (1990) [5] Deoni et al. MRM 53(1): 237-241 (2004) [6] Yarnykh V. MRM 57(1):192-200 (2007) [7] Wang et al. MRM 56(2):463-468 (2006) [8] Yarnykh V. MRM 63(6) 1610-1626 (2010) [9] Mossahebi and Samsonov, Proc. of ISMRM (2012)