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Introduction: MR parameter mapping is a valuable tool for tissue characterization. However, its practical utility has been limited by long data 
acquisition times. To address this problem, a number of approaches have been proposed to enable parameter mapping from undersampled data. One 
approach is to reconstruct the parameter-weighted image sequence from undersampled data using various constraints (e.g., sparsity constraint [1] or 
partial separability constraint [2]), followed by parameter estimation from the reconstructed image sequence. Several successful examples are 
described in [3]-[6]. Another approach is to directly estimate the parameter map from the undersampled k-space data, bypassing the image 
reconstruction step completely [7]-[9]. In this work, we propose a new method based on the second approach but allows sparsity constraint to be 
effectively used for improved parameter estimation. Some representative results from T2 brain mapping are shown to illustrate the performance of 
the proposed method.   
Method: Here we use T2 mapping as an example to describe the proposed method, although it is generally applicable to other types of parameter 
mapping. For multi-echo T2 mapping, we assume that the T2 weighted images Im(x) can be expressed as Im(x) = ρ(x)exp(-R2(x)TEm), where ρ(x) 
represents the distribution of the spin density, R2(x) represents the distribution of the transverse relaxation rate, and TEm is the m-th echo time. Im(x) is 

related to k-space data by ( ) ( )exp( () )2m m md I d nπ= − ⋅ +∫ k x xk kx . After proper discretization, we have ,m m m m= +F I nd where Fm denotes the 

Fourier encoding matrix, Im = Фm(R2)ρ, Фm(R2) is a diagonal matrix with the diagonal entry [Фm]n,n= exp(-R2(xn)TEm) and R2(xn) represents the 
relaxation rate at the nth voxel. Given this observation model and assume that nm are mutually independent Gaussian noise vectors, we can directly 
determine R2 from the measured data dm using a penalized maximum likelihood (PML) formulation as follows:  
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where ( )Ψ ⋅  is a regularization functional and λ is the regularization parameter. It is well known that in parameter mapping, the values of 2R are 

tissue-dependent. Since the number of tissue type is relatively small as compared to the number of image voxels, we can apply a sparsity constraint 
to 2R with an appropriate sparsifying transform. Since directly enforcing sparsity constraint through the 0l norm can be practically difficult, a total 

variation regularization is used to enforce sparsity in the finite difference domain, i.e., ( ) ( )
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alternating minimization algorithm based on half-quadratic regularization and Quasi-Newton methods to solve (1). Specifically, with the Huber 
function approximation [10], it can be shown that Eq. (1) can be converted into 
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where hg  and vg  are two auxiliary variables. Alternating minimization procedures for solving (2) are: 

for a fixed 2R and ρ , we update hg  and vg  by a soft-thresholding operation; for a fixed hg and 

vg , we update 2R and ρ by a Quasi-Newton Broyden-Flecher-Goldfarb-Shannon algorithm [11]. To 

improve the accuracy of Huber function approximation, a continuation procedure can 
be applied as in [10].   
Results: We applied the proposed method to a T2 brain imaging experiment using a 
numerical phantom [12], which simulates a multi-echo spin echo acquisition with a 
total number of 14 echoes and 17.2 ms echo spacing. We undersampled the k-space at 
the ratios of 4.6, 3.5 and 2.8. The corresponding acquisition times are equivalent to 
acquiring 3, 4, 5 fully sampled image frames (denoted as Neq). We added complex 
white Gaussian noise to the k-space data such that the ratio of the signal (in a region of 
the grey matter) to the noise standard deviation is 20dB. We compared the proposed 
method with a dictionary learning based compressed sensing reconstruction method 
(referred to as CS) [3], which only takes into account the temporal relaxation process. 
The normalized root mean square error (NRMSE) for the reconstructed R2 map is 
shown in Table 1. The reconstructed R2 maps for Neq= 3 and 5 are shown in Fig. 1. As 
can be seen in this figure, when less data were acquired (i.e., Neq = 3), the CS 
reconstruction suffers from severe artifacts, although these artifacts significantly 
reduced when more data were acquired (i.e., Neq = 5). In contrast, the proposed 
method produces high-quality parameter maps at both high and low undersampling 
ratios. The observations are consistent with the NRMSE shown in Table 1.  
Conclusion: We proposed a new method to directly reconstruct parameter maps from 
highly undersampled, noisy k-space data, utilizing an explicit signal model while 
imposing a sparsity constraint on the parameter maps. An algorithm was described to 
solve the underlying optimization problem. Representative results from a T2 brain imaging example were also presented to illustrate the performance 
of the proposed method. The proposed method should prove useful for fast MR parameter mapping with sparse sampling. 
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Neq CS Proposed 
3 12.0% 5.2% 
4 8.4 % 4.5% 
5 5.9 % 4.2% 

Table 1: The NRMSE of reconstructed  
R2 maps at three undersampling ratios.  

 
Fig. 1. (a) Reference R2 estimated from fully sampled data; 
(b)-(c) Reconstructed R2 maps using Neq = 3; (d)-(e) 
Reconstructed R2 maps using Neq = 5.
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