Model-Based MR Parameter Mapping with Sparsity Constraint

Bo Zhao^{1,2}, Fan Lam^{1,2}, Wenmiao Lu², and Zhi-Pei Liang^{1,2}

¹Department of Eletrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, ²Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Introduction: MR parameter mapping is a valuable tool for tissue characterization. However, its practical utility has been limited by long data acquisition times. To address this problem, a number of approaches have been proposed to enable parameter mapping from undersampled data. One approach is to reconstruct the parameter-weighted image sequence from undersampled data using various constraints (e.g., sparsity constraint [1] or partial separability constraint [2]), followed by parameter estimation from the reconstructed image sequence. Several successful examples are described in [3]-[6]. Another approach is to directly estimate the parameter map from the undersampled **k**-space data, bypassing the image reconstruction step completely [7]-[9]. In this work, we propose a new method based on the second approach but allows sparsity constraint to be effectively used for improved parameter estimation. Some representative results from T_2 brain mapping are shown to illustrate the performance of the proposed method.

<u>Method:</u> Here we use T_2 mapping as an example to describe the proposed method, although it is generally applicable to other types of parameter mapping. For multi-echo T_2 mapping, we assume that the T_2 weighted images $I_m(\mathbf{x})$ can be expressed as $I_m(\mathbf{x}) = \rho(\mathbf{x})\exp(-R_2(\mathbf{x})T_{Em})$, where $\rho(\mathbf{x})$ represents the distribution of the spin density, $R_2(\mathbf{x})$ represents the distribution of the transverse relaxation rate, and T_{Em} is the *m*-th echo time. $I_m(\mathbf{x})$ is related to \mathbf{k} -space data by $d_m(\mathbf{k}) = \int I_m(\mathbf{x})\exp(-2\pi\mathbf{k}\cdot\mathbf{x})d\mathbf{x} + n_m(\mathbf{k})$. After proper discretization, we have $\mathbf{d}_m = \mathbf{F}_m\mathbf{I}_m + \mathbf{n}_m$, where \mathbf{F}_m denotes the Fourier encoding matrix, $\mathbf{I}_m = \mathbf{\Phi}_m(\mathbf{R}_2)\mathbf{\rho}$, $\mathbf{\Phi}_m(\mathbf{R}_2)$ is a diagonal matrix with the diagonal entry $[\mathbf{\Phi}_m]_{n,n} = \exp(-R_2(\mathbf{x}_n)T_{Em})$ and $R_2(\mathbf{x}_n)$ represents the relaxation rate at the nth voxel. Given this observation model and assume that \mathbf{n}_m are mutually independent Gaussian noise vectors, we can directly

$$\{\hat{\boldsymbol{\rho}}, \ \hat{\boldsymbol{R}}_2\} = \arg\min_{\boldsymbol{\rho}, \boldsymbol{R}_2} \sum_{m=1}^M \left\| \boldsymbol{d}_m - \boldsymbol{F}_m \boldsymbol{\Phi}_m(\boldsymbol{R}_2) \boldsymbol{\rho} \right\|_2^2 + \lambda \Psi(\boldsymbol{R}_2) , \qquad (1)$$

where $\Psi(\cdot)$ is a regularization functional and λ is the regularization parameter. It is well known that in parameter mapping, the values of \mathbf{R}_2 are tissue-dependent. Since the number of tissue type is relatively small as compared to the number of image voxels, we can apply a sparsity constraint to \mathbf{R}_2 with an appropriate sparsifying transform. Since directly enforcing sparsity constraint through the ℓ_0 norm can be practically difficult, a total

variation regularization is used to enforce sparsity in the finite difference domain, i.e., $\Psi(\mathbf{R}_2) = \text{TV}(\mathbf{R}_2) = \sum_{n=1}^{N} |\mathbf{D}_h^{(n)} \mathbf{R}_2| + |\mathbf{D}_v^{(n)} \mathbf{R}_2|$. We propose an alternating minimization algorithm based on half-quadratic regularization and Quasi-Newton methods to solve (1). Specifically, with the Huber function approximation [10], it can be shown that Eq. (1) can be converted into

$$\min_{\boldsymbol{\rho},\mathbf{R}_{2},\mathbf{g}_{h},\mathbf{g}_{v}} \sum_{m=1}^{M} \left\| \mathbf{d}_{m} - \mathbf{F}_{m} \boldsymbol{\Phi}_{m}(\mathbf{R}_{2}) \boldsymbol{\rho} \right\|_{2}^{2} + \frac{\lambda}{2\beta} \left\| \mathbf{g}_{h} - \mathbf{D}_{h} \mathbf{R}_{2} \right\|_{2}^{2} + \lambda \left\| \mathbf{g}_{h} \right\|_{1} + \frac{\lambda}{2\beta} \left\| \mathbf{g}_{v} - \mathbf{D}_{v} \mathbf{R}_{2} \right\|_{2}^{2} + \lambda \left\| \mathbf{g}_{v} \right\|_{1},$$
(2)

determine \mathbf{R}_2 from the measured data \mathbf{d}_m using a penalized maximum likelihood (PML) formulation as follows:

where \mathbf{g}_h and \mathbf{g}_v are two auxiliary variables. Alternating minimization procedures for solving (2) are: for a fixed \mathbf{R}_2 and $\boldsymbol{\rho}$, we update \mathbf{g}_h and \mathbf{g}_v by a soft-thresholding operation; for a fixed \mathbf{g}_h and \mathbf{g}_v , we update \mathbf{R}_2 and $\boldsymbol{\rho}$ by a Quasi-Newton Broyden-Flecher-Goldfarb-Shannon algorithm [11]. To improve the accuracy of Huber function approximation, a continuation procedure can be applied as in [10].

<u>Results</u>: We applied the proposed method to a T₂ brain imaging experiment using a numerical phantom [12], which simulates a multi-echo spin echo acquisition with a total number of 14 echoes and 17.2 ms echo spacing. We undersampled the k-space at the ratios of 4.6, 3.5 and 2.8. The corresponding acquisition times are equivalent to acquiring 3, 4, 5 fully sampled image frames (denoted as N_{eq}). We added complex white Gaussian noise to the \mathbf{k} -space data such that the ratio of the signal (in a region of the grey matter) to the noise standard deviation is 20dB. We compared the proposed method with a dictionary learning based compressed sensing reconstruction method (referred to as CS) [3], which only takes into account the temporal relaxation process. The normalized root mean square error (NRMSE) for the reconstructed \mathbf{R}_2 map is shown in Table 1. The reconstructed \mathbf{R}_2 maps for N_{eq} = 3 and 5 are shown in Fig. 1. As can be seen in this figure, when less data were acquired (i.e., $N_{eq} = 3$), the CS reconstruction suffers from severe artifacts, although these artifacts significantly reduced when more data were acquired (i.e., $N_{eq} = 5$). In contrast, the proposed method produces high-quality parameter maps at both high and low undersampling ratios. The observations are consistent with the NRMSE shown in Table 1.

 N_{eq}
 CS
 Proposed

 3
 12.0%
 5.2%

 4
 8.4%
 4.5%

 5
 5.9%
 4.2%

 Table 1: The NRMSE of reconstructed

R₂ maps at three undersampling ratios.

<u>Conclusion:</u> We proposed a new method to directly reconstruct parameter maps from highly undersampled, noisy \mathbf{k} -space data, utilizing an explicit signal model while imposing a sparsity constraint on the parameter maps. An algorithm was described to

solve the underlying optimization problem. Representative results from a T_2 brain imaging example were also presented to illustrate the performance of the proposed method. The proposed method should prove useful for fast MR parameter mapping with sparse sampling.

Reference: [1] Lustig *et al, MRM,* 58:1182-1195, 2007. [2] Liang, *ISBI,* 988-991, 2007. [3] Doneva *et al, MRM,* 4:1114-1120, 2010. [4] Bilgic *et al, MRM,* 66:1601-1615, 2011. [5] Petzschner *et al, MRM,* 66:706-716. [6] Zhao *et al, ISMRM,* p. 2233, 2012. [7] Haldar *et al, ISBI,* 266-269, 2009. [8] Block *et al, IEEE TMI* 1759-1769, 2009. [9]Sumpf *et al, JMRI,* 420-428, 2011. [10] Zhao *et al, IEEE TMI,* 1809-1820, 2012. [11] Nocedal *et al,* Numerical Optimization, 2006. [12] Collins *et al, IEEE TMI,* 463-468, 1998.