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Introduction: Myocardial 3D T2 mapping is useful for differentiating between infarct, edema and normal tissue.  However, generating 3D T2 maps requires acquiring 
multiple complete 3D datasets with different T2 weightings resulting in long acquisition times[1].  Reconstruction methods which incorporate prior knowledge of image 
structure may enable reconstruction from fewer measurements reducing acquisition time thus making quantitative T2 measurement more clinically relevant.  
Compressed sensing (CS) methods can reconstruct high fidelity images from under-sampled datasets typically by incorporating prior knowledge that the image of 
interest is sparse, i.e. compressible, in some basis, e.g. wavelets[2]. Recently, reconstruction methods which incorporate knowledge that the image is patch-wise self-
similar have demonstrated improved performance over standard sparsifying transform based reconstructions[3]. Here we apply Low-dimensional-structure self-learning 
and thresholding (LOST)[3] to reconstruct under-sampled T2 mapping dataset and compare with SENSE reconstruction with equivalent acceleration rates. 
Methods: We acquired a fully sampled dataset from an ex-vivo porcine heart containing an infarct.  Four interleaved volumes were acquired with varying T2 Prep TEs 
=35, 40, 45, 50 ms resulting in a differentially weighted dataset suitable for T2-mapping[1]. Other imaging parameters were: TR/TE 4.3/2ms, flip angle 18°, simulated 
diastolic window 65.2ms for a simulated heart rate of 60 BPM, FOV 130×138×100mm3, voxel size 2×2.3×4.0 mm3, 8 channel head coil and matrix size of 128x60x32. 
This fully sampled dataset was retrospectively under-sampled, retaining only 33.3%, 26% of the original phase encodes in the ky, kz directions, corresponding to an 
acceleration rate of approximately R3, R3.9 respectively. First, we fully sample a rectangular 20 ky  x 10 kz region at the center of k-space.  For SENSE reconstructions, 
the remaining sampled phase encodes are selected regularly: (R3) R2 in ky,kz; (R3.9) R3 in ky, R2 in kz. For LOST reconstructions the remaining phase encodes were 
selected randomly from a normal distribution centered at the k-space origin, with each echo having a different sampling pattern.  The coil sensitivity profile used for all 
reconstructions was estimated from the fully sampled center of k-space after multiplying with a Kaiser window to reduce Gibbs ringing artifacts. Each differentially T2 
weighted image was reconstructed independently. The fully sampled data set was reconstructed using R1 Generalized Encoding Matrix (GEM) SENSE [4], i.e. 
multiplying the acquired data by the pseudo-inverse of an encoding matrix which incorporated the sensitivity profiles and all Fourier basis functions. The under-sampled 
auto-calibrated SENSE reconstructions were similarly performed using GEM SENSE, but only including Fourier basis functions corresponding to the sampled k-space 
locations into the encoding matrix. The under-sampled LOST reconstructions were performed in stages.  First the coils were combined using R1 GEM SENSE.  Under-
sampling aliasing artifacts in the resulting coil combined image were then removed using LOST thresholding (parameters: threshold=0.03, Nb = 4; Ngroup = 16; 
Nsearch = 8; Ndepth = 1).  Data consistency was then enforced on a per-coil basis for the sampled k-space locations.  These steps were repeated for 100 iterations.  T2 
maps and goodness of fit R2 parameters were computed by linear regression through log-transformed data. Pixels with regression coefficient R2<0.9 were rejected, as 
lower R2 represent a poor fit to the exponential function from possible corruption of the underlying data through noise/subsampling/reconstruction. 
Results: Global reconstruction Error: Figure 1 compares a representative slice from the reconstructed T2 weighted volume corresponding to TE=35ms and the T2 map 
computed from all reconstructed differentially T2 weighted volumes for the fully sampled, SENSE and LOST methods.  At R3 SENSE preserves edge details better than 
LOST but has noise amplification.  At R3.9 SENSE exhibits high noise amplification degrading the resultant T2 map, resulting in many pixels which don’t fit the 
exponential decay model. The LOST reconstruction exhibits blurring of high spatial frequency features but preserves the exponential decay better with increasing 
acceleration. Distribution of errors: Figure 2 compares the SENSE and LOST pixel-wise distribution of T2 errors for pixels with R2>0.9.  Table l lists the mean and 
standard deviation of pixels with a goodness of fit R2> 0.9.  Additionally, Table 1 lists the ratio of total pixels with R2>0.9 in the respective reconstruction to total pixels 
with R2>0.9 in the fully sampled reconstruction.  For acceleration rates R3 and R3.9, the mean pixel-wise T2 error for LOST is lower than SENSE. 
Conclusion: We find that for acceleration rates R3 and R3.9, the mean T2 error is lower for LOST than SENSE.  At rate R3 SENSE reconstructs edge details better than 
LOST even though SENSE’s mean T2 error is higher. At rate R3.9, the SENSE matrix is poorly conditioned, resulting in high noise amplification while LOST 
reconstruction exhibits blurring of high frequency details.  Further testing with retrospectively and prospectively under-sampled in-vivo datasets is needed to validate 
the viability of the proposed reconstruction strategy for clinical use. 
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 R3 SENSE R3 LOST R3.9 SENSE R3.9 LOST 

T2 error mean±std -4.44±24.70 -3.70±23.07 -13.83±38.44 -3.86±23.32 
Ratio R2>0.9 0.67 0.68 0.37 0.76 

 

Figure 1: Representative slice of reconstructed 3D T2 weighted, TE=35ms (top row) and estimated T2 map 
(bottom row) volumes.  (Columns left to right) Fully sampled, R3 self calibrated SENSE, R3 LOST, R3.9 self 
calibrated SENSE, R3.9 LOST reconstructions. SENSE dataset was regularly under-sampled while LOST 
was Gaussian under-sampled.  Pixels with goodness of fit R2<0.9 were set to zero for display purposes. 

Table 1: Comparison of T2 error statistics and quality of T2 model fit for R3.9 
accelerated SENSE and LOST 

Figure 2: Distribution of pixel-wise T2 error for pixels with 
R2>0.9 in entire volume for R3, R3.9 SENSE and LOST 
reconstructions. 
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