A flip-angle-optimized 3D FLASH sequence for fast dynamic T1 mapping

Maximilian Freiermuth¹, Linus Willerding², Maximilian F. Reiser¹, Michael Peller¹, and Olaf Dietrich¹

¹Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany, ²Department of Internal Medicine III, Ludwig-Maximilians-University Hospital Munich, Munich, Germany

Target audience: MR physicists, (radiologists)

Purpose: Fast T_1 mapping is of considerable interest for many different MRI applications. In particular, for the rapid quantification of contrast-agent concentrations, fast dynamic T_1 mapping methods with temporal resolutions in the order of seconds are required. The purpose of the present study was to optimize and evaluate a fast three-dimensional T_1 mapping approach based on the variable flip angle (VFA) technique, in which the acquisition of only a single 3D FLASH data set for each time point is sufficient.

Theory: The conventional VFA technique is based on the acquisition of at least two FLASH data sets with different flip angles (FA).¹ For dynamic applications, this approach can be modified by combining a longer baseline acquisition with several FAs and a fast repeated acquisition with only a single FA.² The signal intensity,

 $S_{\rm dyn}$, of these single-FA (1FA) acquisitions with FA $\alpha_{\rm dyn}$ can be used to determine $T_{1,\rm dyn}$ by inversion of the well-known FLASH equation (neglecting the T_2^* dependence for sufficiently short echo times):

$$\begin{split} E_1 &= \exp(-\text{TR}/T_{1,\text{dyn}}) \approx [M_0 \sin(\alpha_{\text{dyn}}) - S_{\text{dyn}}] / [M_0 \sin(\alpha_{\text{dyn}}) - S_{\text{dyn}} \cos(\alpha_{\text{dyn}})]. \end{split}$$
 The optimal FA, α_{dyn} , for the dynamic phase can be determined by minimizing the statistical error of $T_{1,\text{dyn}}$. Assuming sufficient time for a precise and accurate measurement of the baseline parameters, $T_{1,0}$ and in particular M_0 , and, thus, considering only the influence of errors of the measured dynamic signal intensity, S_{dyn} , the statistical error of E_1 is $\Delta E_1 = |\partial E_1 / \partial S_{\text{dyn}}| \Delta S_{\text{dyn}} = [1 - E_1 \cos(\alpha_{\text{dyn}})]^2 / [M_0 \sin(\alpha_{\text{dyn}}) (1 - \cos(\alpha_{\text{dyn}}))] \cdot \Delta S_{\text{dyn}}$. This expression as function of α_{dyn} (for given E_1) has a unique minimum defining the optimal FA for dynamic T_1 measurements (see Fig. 1):

 $\alpha_{\rm dyn,opt} = \arccos[(2E_1-1)/(2-E_1)].$

It is interesting to note that $\alpha_{dyn,opt}$ lies always above the Ernst angle $\alpha_{Ernst} = \arccos(E_1)$ by about 33 % to 73 %.

Methods: The proposed single-FA method was evaluated in phantom measurements at a 3-Tesla whole-body MRI scanner using a phantom with stepwise increased concentrations of Gadolinium contrast agent. To evaluate the optimal FA, α_{dyn} , VFA measurements were performed at each step with $\alpha_{dyn}=2.5^{\circ}$, 5.0° , 7.5° , 10.0° , 12.5° , 15.0° , 17.5° , 20.0° , 22.5° , 25.0° , and 30.0° (other parameters: TR=7.0 ms, TE=3.0 ms, matrix= $128 \times 128 \times 48$, bandwidth=391 Hz/pixel); B_1 was measured for FA correction.³ As reference, T_1 was determined using a saturation-recovery (SR) measurement. Using all flip angles for the baseline measurement and only a single one for the dynamic 1FA measurements, T_1 maps were calculated for 7 increasing Gd concentrations. The statistical error of the method was assessed using the standard deviation of the T_1 map; the systematic error was assessed using the relative deviation from the SR reference measurement.

Results: The statistical error (standard deviation of T_1 map) as a function of α_{dyn} for different relaxation times, T_1 , is shown in Fig. 2 together with the (appropriately scaled) theoretical curve $\Delta E_1(\alpha_{dyn})$. The minima of both the measured errors and the theoretical curve agree well and increase from about 7° for T_1 =2870 ms to 30° for T_1 =140 ms. The determined T_1 values of the SR and 1FA measurement with α_{dyn} =12.5° (which is the mean value of $\alpha_{dyn,opt}$ over the T_1 range from 140 to 2870 ms) are listed in Table 1:

Table 1: Measured T_1 values (saturation recovery, SR, and single-FA, 1FA, approach)							
Reference (SR): T_1 (ms)	2873	1643	986	787	410	232	140
1FA (α_{dyn} =12.5°): T_1 (ms)	2988	1651	959	749	390	227	144
Relative deviation (%)	+4.0	+0.5	-2.7	-4.9	-4.9	-2.0	+2.8

Discussion: The proposed 1FA technique provides accurate T_1 values (within ±5%). Remaining deviations might be related to neglected T_2^* influences and imperfect B_1 correction. The theoretically derived optimal FA for the 1FA approach, $a_{dyn,opt}$, is confirmed by the evaluation of the statistical error of the parameter maps.

Conclusions: Fast dynamic T_1 mapping is feasible acquiring only a single 3D FLASH data set for each time point in combination with a longer baseline measurement. The optimal FA for the dynamic series can be determined depending on the expected range of T_1 values using the derived equation for $\alpha_{dyn,opt}$ shown in Fig. 1. In

particular when implemented with ultra-fast dynamic acquisition techniques such as TRICKS ⁴ or TWIST ⁵, the temporal resolution of T_1 mapping can be dramatically improved.

References: 1. Fram EK et al. Magn Reson Imaging. 1987;5:201. **2.** Brookes JA et al. Br J Radiol. 1996;69:206. **3.** Yarnykh VL. Magn Reson Med. 2007;57:192. **4.** Korosec FR et al. Magn Reson Med. 1996;36:345. **5.** Song T et al. Magn Reson Med. 2009;61:1242.

Flip angle (degrees) Fig. 2: Measured statistical error (standard deviation in T_1 maps, red circles) and scaled theoretical statistical error (ΔE_1 , blue line). The minima of experimental and theoretical errors are indicated by colored vertical lines.