Mono-exponential T₂-analysis of a two-pool system – Does echo-spacing matter?

Hendrikus Joseph Alphons Crooijmans¹ and Oliver Bieri¹

¹Radiological Physics, University of Basel Hospital, Basel, Switzerland

Target audience

The presented work will be beneficial to anyone using the spin-echo T_2 quantification approach.

Purpose

It is generally well accepted that tissue exists of multiple relaxation components, such as for example the free water protons and myelin-bound water protons in brain tissue¹. However, the spin-echo based quantification of a single T_2 on such tissues is commonly considered to be the gold standard. Therefore, we have investigated whether the echo-spacing (ΔTE) matters when performing a mono-exponential analysis of a two-pool system.

Methods

We have performed Bloch simulations for a spin-echo sequence of a two-pool system. Pool fractions were varied from 10% to 90% with $T_{2,1} = 50$ ms and $T_{2,2} = T_{2,1}/10$ (5ms). The relaxation curve was sampled every ms up to $3xT_{2,1}$ (150ms), Gaussian noise was added with an SNR ~50 for the initial signal at TE = 0, creating 100 measurements per TE (simulating an average ROI size). Subsets were taken with constant echo-spacing (Δ TE) ranging from 1ms up to 30ms. The subsets were mono-exponentially fitted, omitting sample points where S < 3x standard deviation of the added noise.

Results

Figure 1 T₂ as a function of the echospacing, without noise (left), mean values after analysis of signal with noise addition (middle) and a zoomed in view of this graph with additional error bars indicating the standard deviation for T_{2,2}-pool size of 10%, 20% and 30% (right).

The shorter the echo-spacing, the larger the influence of the fast relaxing pool, the larger the fast-relaxing pool the larger its influence on the obtained T₂ (Figure 1). Noise influences the observation of T₂ (Figure 1) and might lead to a reduced number of sample points to fit as a result of a fast decay due to a large T_{2,2}-pool. Figure 2 shows box-plots of the simulations with 10%, 20% and 30% T_{2,2}-pool fractions, comparing 5, 8, 10, 12 and 15ms echo-spacing. The largest difference between the mean as well as median observed T₂-values is obtained in a sample with 30% T_{2,2}-pool size and is approximately 3ms (Δ TE = 5ms versus Δ TE = 15ms).

Figure 2 Box-plots for T_2 -analysis with $\Delta TE = 5, 8, 10$ and 12ms for samples with 10%, 20% and 30% $T_{2,2}$ -pool size (f.l.t.r.).

Discussion

Simulation results illustrate the independency of the T₂-quantification on ΔTE and pool fraction (fraction $\leq 30\%$) in a no-noise situation as well as the situation with noise (Figure 1). The observed differences between the means and medians (best visible in Figure 2) does not exceed 3ms when T_{2,2}-pool fractions $\leq 30\%$ and 5ms $\leq \Delta TE \leq 15$ ms. In practice, this difference will not be considered to be an observation of different T₂, since the typical standard deviation obtained in an ROI of in vivo white matter is 6ms for a 10ms spaced T₂-quantification (single-echo spin-echo with TR = 2.5s; 30 echoes, TE_{max} = 300ms; voxelsize 1.3x1.3x4mm³).

Conclusion

We have shown that the echo-spacing in a spin-echo acquisition for T_2 -quantification does not matter when performing a monoexponential analysis of a two-pool system.

References

1. MacKay AL, Whittall KP, Adler J, Li DKB, Paty DW, Graeb DA. In vivo visualization of myelin water in brain by magnetic resonance. *Magn Reson Imaging*. 1994; 31: 673-677.