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Figure 1:  Tissue classification for contour initialization. The membership 
function used to classify the intensity histogram into liver, background, and 
fat, as well as the resulting masks overlaid on the original image are shown.  

Figure 2: Focally decreased stiffness due to a  hepatic blood vessel. Magnitude, 
motion-encoded phase, and stiffness images are shown.   

Figure 3: Initializations and segmentations in difficult cases. The images are 
affected by: a) inhomogeneity, b) motion artifact, and c) reduced signal due to 
iron overload. Initial contours constructed by taking the internal organ masks in 
the left half of the image are shown in red. ROIs segmented by the active contour, 
overlaid on the inhomogeneity-corrected images, are in green. Blood vessels are 
largely excluded successfully.  
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Purpose: Magnetic Resonance Elastography (MRE) is a clinical technique that is being increasingly used to noninvasively diagnose and stage hepatic fibrosis by 
calculating hepatic stiffness [1]. In MRE, mechanical waves are introduced into the body, imaged with phase-contrast MRI, and the resulting phase images are 
processed to calculate stiffness images. The image acquisition and stiffness inversion are highly reproducible. However, the selection of an appropriate ROI from which 
to report the stiffness of the liver is currently done manually and results in inter-reader variability of the stiffness measurements of approximately 20%. We recently 
proposed a promising, fully automated method for the retrospective analysis of clinical MRE images whose agreement with the readers was superior to inter-reader 
agreement [2,3].  The algorithm works by defining an initial liver contour via tissue classification, refining it with an active contour, using a confidence map determined 
during the stiffness inversion to limit the ROI to areas with high SNR and minimal wave interference, and calculating the mean stiffness. A new approach to the 
initialization stage of this algorithm is presented here that will provide additional stability to the entire algorithm and allow for the automated analysis of images with 
high intensity inhomogeneity, motion artifact, and poor edge contrast, which are common in clinical MRE magnitude images. Clinicians involved in advanced imaging 
as well as researchers working on developing automated quantification techniques are the target audience for this study. 

Methods: Clinical MRE magnitude images are acquired with a GRE sequence with TR/TE = 50/20 ms. The inherent fat > blood > liver intensity contrast is locally 
distorted, however, due to intensity inhomogeneity caused by coil sensitivity profiles, and intravoxel phase dispersion due to MRE driver motion. Fat, being closest to 
the coils and the driver, is most strongly affected by these problems, causing its intensity range to overlap with that of the liver in affected areas. Fat is initially 
separated from the internal organs by progressively eroding 4 pixel layers from the outside of the body until the layer with minimal SNR, containing the ribs and/or the 
abdominal cavity, is found. If no distinguishable minimum is found, erosion is stopped 8 pixels after the highest intensity layer, corresponding roughly to the middle of 
the fat layer.  The mean and standard deviation (μ and σ) of the tissue intensities inside this boundary are calculated exclusively from the left half of the image (which 
contains most of the liver). The fat external to the boundary is then thresholded above the mean of the internal tissues to remove areas where signal is decreased due to 
intravoxel phase dispersion and low coil sensitivity. The μ and σ of fat are then calculated and used in conjunction with the μ and σ of the internal tissues to construct 
the intensity membership functions illustrated in Figure 1. These functions are used to classify the internal tissues as background, liver, or fat. The initial liver mask is 
formed using the internal organs mask in the left half of the image. Voxels in which the sum of all membership functions is below 0.6 are excluded as partial volume or 
blood vessels (which have intensities between liver and fat). The image intensity is then normalized with the Local Entropy Minimization Scheme (LEMS) [3], and the 
active contour segmentation as well as confidence map thresholding and outlier removal, are performed as per our previous method [2]. Small blood vessels, illustrated 
in Figure 2, are not always excluded by the inversion confidence map, but may cause stiffness underestimation, and thus are targeted for removal from the ROI by this 
segmentation.  The new initialization algorithm was tested using a dataset of 500 clinical MRE cases that had stiffnesses analyzed by multiple clinical readers.  

Results: The algorithm successfully analyzed all 500 clinical cases, 9% of which were previously considered to have failed due to having initializations in nonliver 
tissue. Examples of difficult cases are shown in Figure 3. The Bland-Altman confidence interval for the difference between the stiffness measurement by the algorithm 
and the readers was -1.4 ± 25.8 % (mean ± 1.96 standard deviation) across all cases.  

Discussion: The model-less classification proposed here led to successful 
initialization in all 500 cases and thus proved to be highly versatile with respect 
to intensity variations within and between images. The removal of the 
background and regions affected by intravoxel phase dispersion, combined with 
the intensity correction step, allowed the contour to segment without leaking, 
even in cases with low edge contrast. Blood vessels were excluded successfully 
in many cases, though additional classification after the intensity correction may 
yield further improvement. The discrepancy between the algorithm and the 
readers was comparable to the discrepancy between readers as determined by 
our previous study.  

Conclusions: These results demonstrate an improvement to a fully automated 
algorithm for reading clinical hepatic MRE cases that is able to determine 
appropriate ROIs for the stiffness measurements across a wide range of cases, 
including those with motion artifact, iron overload, and intensity inhomogeneity.  
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