A Simultaneous Multi-Slice Fast-k_z RF Pulse for Reduced B1+ Inhomogeneity

Robert James Anderson¹, Benedikt Andreas Poser¹, William A. Grissom², and Victor Andrew Stenger¹

¹Dept. of Medicine, University of Hawaii, Honolulu, HI, United States, ²Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

Target Audience: MR physicists and others interested in multi-dimensional RF pulses and B1+ compensation.

Purpose: There is recent interest in Simultaneous Multi-Slice (SMS) imaging because of reduced imaging times [1-4]. SMS excitation is typically achieved with a single-slice pulse modulated to excite N simultaneous identical slices. However, there has been little work done on extending SMS excitations to multi-dimensional RF pulses. For example, the "Fast- k_z " or "spokes" 3D RF pulse has been shown to excite thin slices with in-plane B1+ inhomogeneity reduction [5]. We present a simple, analytical "proof-of-concept" SMS Fast- k_z pulse for correcting the central brightening associated with B1+ inhomogeneity from a volume transmitter. We demonstrate the pulse with excitation of multiple B1+ inhomogeneity compensated brain slices at 3T.

Methods: A Fast- k_z pulse is a series of slice-select (z) sub-pulses separated by in-plane (x-y) gradient blips. Each blip effectively weights an excitation $k_x k_y$ point within a slice. Modulation of the sub-pulses will enable the excitation of multiple slices. An analytical slice profile m(x,y,z) for N slices of thickness z_0 , separation Δz , and quadratic curvature in x-y can be written as:

$$n(x, y, z) = \operatorname{rect}(z / z_0) \Big[1 + \varepsilon (x / x_0)^2 + \varepsilon (y / y_0)^2 \Big] * \sum_{n = -N/2}^{N/2 - 1} \delta(z - n\Delta z)$$

The quadratic curvature can be used to compensate for the central brightening from a volume transmitter and can be adjusted with ε , x_0 , and y_0 . The corresponding RF weighting of excitation k-space $b(k_x,k_y,k_z)$ will then be given by:

$$b(k_x, k_y, k_z) = \operatorname{sinc}(2\pi k_z z_0) \operatorname{Diric}(N\pi k_z \Delta z) \Big\{ \delta(0, 0) - A \Big[\delta(k_x - 1/x_0, 0) + \delta(k_x + 1/x_0, 0) \Big] - A \Big[\delta(0, k_y - 1/y_0) + \delta(0, k_y + 1/y_0) \Big] \Big\}.$$

"Diric" is the Dirichlet function from sampling theory. Note that m(x,y,z) is just the Fourier transformation of $b(k_x,k_y,k_z)$ assuming x_{0,y_0} >FOV of the excitation. The degree of B1+ correction can be adjusted in an *ad hoc* manner by the relationship $\varepsilon = 2A\pi^2/(1-2A)$. Figure 1 shows an example of an N=3 MB Fast- k_z pulse.

Figure 1. (a) The in-plane k-space weighting will produce a quadratic excitation profile. Each point is weighted by a MB slice-select pulse along z. (b) MB Fast- k_z pulse with corresponding gradients for N=3. Simulated slice profiles in (c) z and (d) x-y. The value ε controls the degree of B1+ compensation.

Three prototype pulses (*N*=3, Δz =3cm, z_0 =5mm, 150mT/m slew rate, 20mT/m peak) with ε =0, 0.5 and 1.0 and x_{0,y_0} =2FOV were generated in MATLAB. Human brain images were acquired with a Siemens 3T scanner using the body coil for both transmitting and receiving. A fully sampled 3D FLASH sequence (128x128, 40ms TR, 10ms TE, 30° FA, 2.5mm slices) was used for acquisition. Individual slices were extracted from the reconstructed 3D volume.

Results And Discussion: Fig. 2 shows proof-of-concept 3T brain slices. The images from left to right were acquired with increasing values of correction ε . Note that $\varepsilon = 0.5$ and 1.0 have reduced B1+ inhomogeneity compared to $\varepsilon = 0$ (no correction). These results demonstrate that the Fast- k_z pulse design can be used for SMS excitations for B1+ control. The pulse design can be extended to include more accurate models for B1+ as well as to parallel transmission applications and correcting through-plane signal loss artifact [6-8].

References: [1] Larkman JMRI **14** p.329 2001; [2] Moeller MRM **63** p.1144 2010; [3] Feinberg PlosOne **5** p. e15710 2010; [4] Setsompop MRM, **67** p. 1210 2012; [5] Saekho MRM **55** p.719 2006; [6] Setsompop MRM **56** p.1163 2006; [7] Zhang MRM **57** p.842 2007; [8] Yip MRM **56** p.1050 2006.

Acknowledgements: This work was supported by NIH R01DA019912, R01EB011517, and K02DA02056.

Figure 2. Three slices simultaneously compenesated for 3T B1+ inhomogeneity.