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PURPOSE. Multi-variate pattern analysis (MVPA) applied to BOLD fMRI data has proven successful at decoding different aspects of cognitive 
function (e.g., observed stimuli, presence or absence of memories). In recent years, BOLD fMRI has also permitted basic communication with a 
subgroup of locked-in syndrome patients using activity patterns for distinct covert tasks (motor imagery vs. spatial navigation) as response 
signatures1. To advance such a fMRI-based brain-computer interface, we focus the current study on examining whether “Yes/No” thoughts in 
response to binary “Yes/No” questions can be decoded from BOLD-fMRI signals using MVPA and whether they can be decoded regardless of 
intentions.  
METHODS. Two fMRI experiments were conducted in this work. 
Each experiment consisted of an anatomical scan followed by several 
functional scans. Acquisition parameters for the functional scans are 
summarized in Table 1. In Exp. 1, we used a task-cueing paradigm and 
a MVPA searchlight approach to investigate if, and where and when in 
the brain, subjectively correct “Yes/No” answers can be decoded. Ten 
subjects participated in this first experiment. Each trial of the paradigm 
starts with a visual cue (2s) instructing subjects whether they should 
respond the subsequent question honestly or dishonestly. The cue is 
followed by a simple common-knowledge question (4s; e.g., Is the 
Statue of Liberty in Beijing?), a random delay period (2–6s) during 
which subjects no longer see the question, and a final instruction to 
provide a motor response (2s) using an MRI compatible response box. 
The task was split into ten scans, each containing 32 trials. After basic 
pre-processing (slice time correction, motion correction, conversion to 
signal-percent-change), spatiotemporal patterns of hemodynamic 
response associated with subjectively “Yes” and “No” thoughts were 
estimated (AFNI 3dDeconvolve) for each scan of each subject. These 
patterns were subsequently input to Gaussian Naïve Bayesian (GNB) 
classifiers in a searchlight manner (leave-two-out cross validation) 
across all voxels in the grey matter. We did this analysis separately for 
all time points in a range of 12s starting at the onset of the intention cue. 
Group-level t-tests were performed to examine the significance of the 
decoding accuracy against 50%. Areas with accuracy significantly 
above chance are shown in panel A of Fig. 1. In Exp. 2, we scanned 
three subjects on a 7T scanner to confirm, with an independent dataset, 
that the regions detected in Exp. 1 indeed contain sufficient information to accurately decode “Yes/No” thoughts. We also used this second 
experiment to evaluate the effect of increasing temporal signal-to-noise ratio (TSNR) in classification accuracy. The paradigm for Exp. 2 was similar 
to Exp. 1 except: (1) delay between offset of question display and motor response cue was extended to 8s to allow direct use of individual trial 
responses (i.e., no regression needed); and 2) which button signaled “Yes” and which one signaled “No” was randomly changed on each trial (i.e., to 
avoid the possibility of subjects encoding “Yes/No” thoughts as motor responses during the question display and random delay periods). After pre-
processing (same as in Exp. 1), we trained GNB classifiers using response patterns generated by averaging an increasing number of randomly 
selected trials (Navg), which ranged from 2 to 18 trials. We conducted a leave-two-trials-out cross-validation scheme. In each cross-validation 
iteration for a given ROI and Navg level, we trained classifiers based on the time points 2s, 4s and 6s after question onset in training trials to 
separately predict the labels of the three time points in the test trials (left-out from training). The final “Yes” or “No” label for a test trial was decided 
by the vote of its three predicted labels (one per time point). This analysis was conducted on each subject separately. 

RESULTS. We observed nine regions (ROIs) with decoding accuracy significantly above chance level in Exp. 1 at three different time points after 
question onset (Fig 1.A). These were: left parahippocampal gyrus (2s after question onset), left supra-marginal gyrus (4s), left middle frontal gyrus 
(4s), right superior temporal gyrus (4s), left and right inferior frontal gyrus (4s), left medial frontal gyrus (4s), left superior temporal gyrus (6s), and 
left middle frontal gyrus (6s). Panels B-D in Fig. 1 show how decoding accuracy changes with increasing numbers of averaged trials (Navg) for each 
ROI (colored lines). Notably, the left middle frontal gyrus ROI in both 4s and 6s, and the left medial frontal gyrus ROI in 4s after question onset (in 
Exp. 1) showed consistent increasing trend in all three subjects; reaching over 85% accuracy for Navg=18 in all subjects. As controls, we also include 
results for two additional ROIs not shown to accurately decode “Yes/No” thoughts in Experment 1 (right insular cortex and left primary visual 
cortex). Moreover, we also conducted a permutation analysis for each ROI by randomizing labels during classifier training. Results from this 
permutation analysis are shown in grey color for each ROI. In all control cases, the decoding accuracy did not increase with Navg. Semi-transparent 
bands that accompany each line in panels B-D indicate 95% confidence levels of the accuracy estimation. 

CONCLUSIONS. With MVPA searchlight, we identified a set of brain regions showing group-level above-chance accuracy in decoding the 
subjectively corrected “Yes/No” answers to binary questions. Our results from 7T scans further verified that three regions can be used to robustly 
decode the “Yes/No” answers (regardless of intentions) with high accuracy, given sufficiently high TSNR (which can be achieved by means of ultra-
high field scanners and trial-averaging). These findings suggest that subjectively correct answers can be accurately decoded with fMRI in the spatial-
temporal patterns of prefrontal cortex, providing a basis for fMRI-based brain-computer interface. 
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Fig. 1 

 Scanner TR Voxel size TE FA #Slices 
Experiment 1 3T 2s 3×3×5 30ms 90° 33 
Experiment 2 7T 2s 2×2×2 25ms 50° 54 

Table 1 

2331.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


