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Target Audience: Functional MRI (fMRI) and signal/image processing communities. 
 

Purpose: Independent component analysis (ICA) is frequently used for data driven analysis of functional MRI (fMRI) data for task-related as 
well as resting state studies [1]. Correct estimation of the number of independent components (nIC) is essential, since nIC strongly influences 
the results of ICA [2]. Previous studies have suggested that bootstrap stability analysis of the principal modes (BSA) provides a more accurate 
and reproducible estimate of nIC [3, 4]. However, application of BSA imposes a much larger computational burden when compared with the 
most commonly used methods of nIC estimation such as the Minimum Description-length (MDL) criterion. Since low-pass filtering can be 
employed to improve contrast-to-noise ratio prior to ICA [4, 5], we explored whether data downsampling following low-pass filtering reduces 
BSA processing time without compromising nIC estimation or ICA.   
 

Methods: Activation data sets were collected from primary somatosensory cortex of anesthetized squirrel 
monkeys receiving blocks of vibrotactile finger tip stimulation under a well established IACUC-approved 
protocol. Monkeys (n = 2, two imaging sessions per monkey) were anesthetized and prepared for imaging 
as described in [6]. An i.v. bolus of dextran coated MION (30 nm particle size,12-16 mg Fe/kg) in saline 
was injected intravenously to provide cerebral blood volume (CBV) weighted contrast. Piezoceramic 
actuators (Noliac, Kvistgaard, Denmark) delivered a vertical indentation of a 2 mm diameter probe with 
0.34 mm displacement to individual distal fingerpads of digits 1 (D1) and 3 (D3) simultaneously. Seven 
alternating 30s blocks of baseline and vibrotactile stimulation were delivered per imaging run. Three to six runs of 2-shot, multi-slice gradient 
echo planar image series were acquired during the stimulation with the following parameters: TR/TE 750/10ms, in-plane resolution of 273x273 
μm2 and 300 volumes.  Motion correction was performed using AFNI. All the images in the series were blurred using a 3x3 Gaussian kernel 
with σ = 2 pixels. Motion parameters as well as 5 principal components of the signals from the skin were regressed out of the data. Individual 
time-courses were low-pass filtered (f < 0.1 Hz). nIC estimation and ICA were performed on complete and two-fold down-sampled time series 
consisting of 1) the average of all the runs within a session (nICavg and ICAavg); 2) the concatenation of all the runs within a session (nICcat and 
ICAcat). ICA was performed using Group ICA for fMRI Toolbox (GIFT) [1]. BSA and MDL were used for nIC estimation. The number of replicates 
(100 for real datasets, 500 for null-hypothesis datasets) and sampling density for BSA 
bootstrapping (~55% of the total time-points for nICavg,  ~35% of total time points for nICcat) were 
kept the same in all cases.  
 

Results and Discussion: Fig 1 shows the frequency response of the low-pass filter used in 
preconditioning of time-series data for this study. The filter provides high attenuation (22 dB) at f 
= 0.167 Hz, and therefore downsampling the data by a factor of 2 (effective sampling rate of 1/3 
Hz) does not generate significant aliasing. The average time required for BSA estimation of nIC 
without downsampling was 2 hours for concatenated data and 3.89 min for averaged data. nIC 
was computed much more efficiently using BSA when downsampled data were used (20.2 mins 
for concatenated data; 1.45 mins for averaged data). The greater fractional reduction for the 
larger (concatenated) dataset arises from the reduced time required for PCA as well as the 
smaller number of samples per bootstrap for the same bootstrap sampling density. 
Table 1 shows that the nIC estimates (obtained using BSA) with and without 
temporal downsampling agreed well (with a difference ranging from only 1 to 4 
components). Task-related maps obtained using ICAavg and ICAcat with and without 
temporal downsampling are almost identical (average cross correlation =0.95±0.08 
for ICAavg and 0.90±0.13 for ICAcat), when nIC was estimated using BSA. Task-
related maps obtained using ICAavg showed the expected pattern of focal activation 

of D1 and D3 regions in area 3b. In contrast, nIC estimates obtained using MDL with 
temporal downsampling differed significantly (Table 2), and show high variability, 
even though information loss due to aliasing arising from downsampling was 
negligible. Our results indicate that when the data are appropriately low-pass filtered 
in preprocessing stage, nIC and ICA maps obtained after downsampling the data 
(while satisfying Nyquist’s criterion to a reasonable degree) are in agreement with 
those obtained without downsampling when BSA is used, while requiring much less 
processing time.  Although we have used a downsampling factor of 2, greater factors 
are achievable when filters with stricter specifications are used.  
 

Conclusions: BSA is the preferred method for nIC estimation but at a cost of (possibly prohibitively) long computation times. However, 
significant reductions in computation time can be achieved by filtering the data followed by downsampling, thus making it a feasible method of 
nIC estimation for larger datasets. Filtering and downsampling results in negligible loss of information of interest when the stimulus-driven 
response consists of low frequency components or when LFFs are being studied (falling in 0-0.1 Hz range).  
 

References: [1] Calhoun, VD et al. Hum Brain Mapp 2001; 14:140-151      [2] Abou-Elseoud, A, et al. Hum Brain Mapp 2010; 31(8):1207-1216         
[3] Varoquaux, G et al. Neuroimage 2010; 51:288-299              [4] Majeed, W et al. Proc ISMRM 2012; 20:2080 
[5] Hutchison, RM et al. J Neurophysiol 2010; 103(6)3398-3406             [6] Zhang N et al. MRI 2007 ; 25:784-794   

2294.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


