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Introduction: Paradigm-free mapping (PFM) enables to map the fMRI BOLD response in space and time without prior knowledge of the timing of the events (i.e., no 
stimulation paradigm) [1,2]. Assuming a linear hæmodynamic model, PFM is based on the 
deconvolution of the underlying neuronal related component using regularized estimators (Table 1-
Eq.(1)). Such deconvolution approach can take advantage of modern sparsity-promoting 
estimators, such as the Dantzig Selector or LASSO (Eq.(2)) [3], to improve the accuracy of the 
recovered signal [2]. Here, we extend PFM by using state-of-the-art hierarchical structured 
sparsity-promoting estimators to gain robustnesss against variability of the BOLD response with 
respect to the assumed model. Specifically, we define an extended hæmodynamic dictionary based 
on the informed basis set (i.e., canonical HRF, and its temporal and dispersion derivatives) [4], and 
we deploy structured sparsity functionals, such as the LASSO with the extended model (Eq.(3)) 
[3], Group LASSO (Eq.(4)) [5], Weighted Fusion (Eq.(5)) [6,7], and a new Group Weighted 
Fusion penalty (Eq.(6)), which are efficiently solved with the monotone fast iterative shrinkage 
thresholding algorithm (M-FISTA) [8,9]. Our results with simulations and experimental data 

demonstrate that the use of structured sparse functionals provide superior abilities for a paradigm 
free characterization of single-trial BOLD responses at 3T. 
Methods: Synthetic fMRI data: We simulated 100 fMRI voxel time series (duration=256s, 
TR=1s, i.e. N=256 time points) as y(t)=s(t)*h(t)+n(t), where x(t)=s(t)*h(t) is the neuronal-related 
hæmodynamic signal, s(t) is the neuronal-related signal (stimulus timecourse with 6 ON periods of 
duration 0.2s/3s/6s, and random onsets), h(t) is the hæmodynamic response (weighted sum of 
SPM8 canonical HRF (ac = 1), its temporal derivative (at = 1.5), and its dispersion derivative (ad = 
0.5)), and n(t) is a white Gaussian noise term. The amplitude of x(t) was normalized to 6% signal 
change, and three different temporal SNR were simulated (tSNR = 30, 55 and 80) which are 
typically observed in fMRI data at 3T and 7T. In discrete time, this signal model can be rewritten 
as y = Hs + n, where x = Hs and H is the convolution matrix with shifted basis functions of the 
assumed hæmodynamic model (i.e. H is a NxN matrix for LA1, and H is Nx3N otherwise). To 
assess the accuracy of the deconvolution, we computed the mean square error (MSE) of the 
estimates of s (MSEs) and x (MSEx). For each functional the regularization parameters were set 
according to an Oracle procedure minimizing MSEs (i.e. s(t) is known) to benchmark all 
estimators in optimal conditions. Experimental data: Three subjects were scanned in a Siemens 
TIM Trio 3T with 32-ch head coil performing a visual task of 10 events of visual flickering 
checkerboard with duration 1s and random onsets. Data consisted of 140 T2*-weighted GE-EPI 
images  (TR /TE /FA= 2s/30ms/85o, voxel size = 3.25x3.25x3.5 mm3) that were corrected for 
head motion, high pass filtered (cutoff period=128s), and smoothed spatially with isotropic 
Gaussian filter (FWHM=5mm) prior to analysis with the proposed method. The regularization 
parameters were set to λ1 = 4σMAD to obtain estimates with high specific BOLD responses, λ2 = 
5σMAD in the Weighted Fusion penalties to promote the grouping of highly correlated coefficients, 
and σMAD is the Median Absolute Deviation (MAD) estimate of the noise standard deviation [10]. 
Results and Discussion: Synthetic data: As shown in Table 2, GWF outperformed the rest of 
penalty terms in all scenarios, except for the estimation of the hæmodynamic signal at SNR = 80 
and event duration of 6 s where WFU resulted in improved operation. In all cases, LA1 using only 
the canonical HRF yielded unsatisfactory operation proving its lack of sufficient degrees of 
freedom (provided here by the temporal and dispersion derivatives) to fit a different HRF. As 
usual, LA1 also tended to yield extremely sparse estimates of s (i.e. very few coefficients are 
estimated as non-zero) due to the high pairwise correlation of H. Comparing LA3 with GLA, it 
can be seen that the extra degrees of freedom must be used in a structured manner as groups of 
coefficients, and not treated independently as done by LA3. In general, incorporating additional 
structural information about the model via the weighted fusion penalty further improved the 
deconvolution. In this case, the Weighted Fusion penalties promote that highly correlated 
coefficients are to be jointly non-zero when they become significantly relevant to model the voxel 
timeseries. Experimental data: Figure 1 illustrates the results in a voxel located in V1 (see 
activation map) for a representative subject. As expected, the neuronal related hæmodynamic 
signal fitted by LA1, GLA and GWF were nearly identical (top). Yet, it can be seen that the GWF 
estimates of the neuronal-related coefficients (middle) delimit the onset of the hæmodynamic 
events (or stimuli) better than those obtained by LA1 (bottom). The GLA coefficients were nearly 
identical to those of GWF due to the high contrast to noise ratio of the BOLD events in this area. 
However, we observed that the specificity of GLA rapidly deteriorated with lower values of λ1, in 
contrast to GWF, a fact that might be relevant to detect BOLD events in cortical areas with lower BOLD sensitivity. Remarkably, the GWF coefficients of the temporal 
derivative are negative for most of the events, suggesting a slower BOLD response (i.e., longer time-to-peak) than the canonical HRF. This type of characterization is 
not available if the model only comprises the canonical HRF as in LA1, and LA-1 estimates are slightly delayed with respect to the actual onset of the stimuli to 
compensate the model mismatch. Access to this kind of information with the new approach enables a more accurate characterization of the single-trial BOLD response, 
even without information about the timing of the events. 
Conclusion: Structured sparsity is a promising regularization for PFM deconvolution of the fMRI signal. Structural information was defined in terms of groups of 
coefficients corresponding to basis functions of the informed basis set describing the BOLD response via the Group LASSO, and their pairwise correlation via a 
Weighted Fusion. The Group Weighted Fusion functional proposed here gave the best performance among the ones investigated in simulated data. In real fMRI data 
structured sparsity featured enhanced single-trial fMRI modeling with PFM. 
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Table 1: Functional Equations  

 tSNR=30 tSNR=55 tSNR=80 
MSEs MSEx MSEs MSEx MSEs MSEx 

0.2 s 

LA1 1.003 0.982 1.003 0.981 1.003 0.973 
LA3 1.000 0.980 1.000 0.988 1.252 0.210 
GLA 1.000 0.911 0.853 0.422 0.720 0.199 
WFU 1.000 0.980 1.000 0.986 1.160 0.193 
GWF 0.977 0.803 0.827 0.361 0.706 0.192 

 

3 s 

LA1 0.987 0.965 0.958 0.938 0.960 0.844 
LA3 0.981 0.896 0.939 0.701 0.918 0.585 
GLA 0.946 0.781 0.730 0.356 0.598 0.172 
WFU 0.973 0.845 0.927 0.672 0.906 0.549 
GWF 0.882 0.688 0.641 0.305 0.523 0.169 

 

6 s 

LA1 0.965 0.938 0.942 0.888 0.943 0.690 
LA3 0.987 0.938 0.960 0.706 0.975 0.343 
GLA 0.975 0.904 0.909 0.581 0.826 0.334 
WFU 0.974 0.793 0.934 0.631 0.944 0.132 
GWF 0.942 0.720 0.845 0.404 0.771 0.291 

Table 2: Synthetic data results (MSEs and MSEx) 

 
Figure 1: Deconvolution obtained by GW-FUSION, GLASSO 
and LASSO. Vertical bars indicate onset of visual stimuli. Top: 
Proprocessed fMRI time series and haemodynamic estimates. 
Middle and bottom: Coefficient estimates and energy time-series. 
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