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Introduction. Functional connectivity (FC) analyses of fMRI data are a powerful tool for characterizing brain networks 
and how they are disrupted in various neural disorders. However, many FC analyses limit themselves to examining one or 
a small number of seed regions chosen based on a priori information. Other studies that consider the whole brain 
frequently rely on anatomic atlases1 to define network nodes, which may result in mixing distinct activation timecourses 
within a single node. Here, we improve upon previous methods by using a data-driven functional brain parcellation2 to 
compare connectivity profiles of dyslexic versus control readers in the first whole-brain FC analysis of dyslexia. 
Methods. Two large datasets of dyslexic readers (DFI) and non-impaired controls (NI) were analyzed, one containing 
young subjects (mean age 9, n=144) and the second older subjects (age 18-20, n=127). fMRI data were acquired at 1.5T; 
TR=1500 ms; TE=60 ms; FA=60°; slice thickness=7mm. Data were slice-time and motion corrected, head motion was 
balanced between groups, and the effect of a word-rhyming task was regressed out. Functional parcellation was done on 
data from NI subjects using a normalized cut algorithm to group voxels with similar timecourses into functional subunits2, 
resulting in a whole-brain parcellation of 225 nodes (Fig. 1). Temporal correlations in BOLD signal between each pair of 
nodes were calculated, resulting in 225x225 matrix of z-transformed r-values for each subject. Groups were compared 
using the network-based statistic3: A t-test was performed on each cell of the matrix (representing a single connection, or 
“edge”), a t-score threshold was set, and the largest component of suprathreshold edges in each direction (NI>DFI and 
DFI>NI) was determined. Results were corrected for multiple comparisons using group-permutation testing (K=1000). 
 

 
Results. In younger subjects, we detected a subnetwork of 337 edges more strongly connected in the NI group, and a 
subnetwork of 415 edges more strongly connected in the DFI group (p<0.01, corrected). Many of the NI connections 
involved occipitoparietal and frontal areas, while the DFI subnetwork was more diffuse (Fig. 2). In older subjects, we 
detected a subnetwork of 312 edges more strongly connected in the NI group, and a subnetwork of 361 edges in the DFI 
group. Results from older readers showed similar trends for NI in occipitoparietal areas, and older DFI subjects showed 
increased connectivity between frontal regions and a left inferior frontal region (not shown).  
Discussion. The occipitoparietal areas that were better connected in both younger and older NI readers are known to be 
involved in visual association, suggesting that these subjects are better able to process word forms based on their shapes. 
Many of these occipitoparietal connections involved frontal areas responsible for attention and executive control, 
suggesting that NI subjects are better able to modulate their attention to visual stimuli. In the older DFI subjects, persistent 
overconnectivity to a left-frontal phonology region indicates that these subjects continue to rely on laborious “sounding 
out” strategies instead of recognizing words via an automatic sight-based system. These connectivity results deepen our 
understanding of dyslexia, moving beyond magnitude of activation in isolated areas and highlighting the importance of 
between-region synchrony for successful reading. We believe this data-driven analysis method can be extended to 
examine differentially connected subnetworks in a range of neural disorders. 
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Fig. 1 Fig. 1. Network nodes 
defined using a 225-region 
functional brain 
parcellation.  
Fig. 2. An axial (a) and 
sagittal (b) depiction of 
subnetworks differentially 
connected in NI vs. DFI 
readers. Red = stronger in 
NI; blue = stronger in DFI. 
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NI > DFI 
DFI > NI p < 0.01, corrected 
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