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Introduction: Human connectome mapping provides opportunities to identify neural pathways that underlie human brain function, and to further our understanding of the 
physiological basis for information and mental representation. This is important to understand both normal brain function and disease-related dysfunction [1]. Since the 
1990s, analysis of complex networks based on graph theory has lead to the rapid rise of studies of brain connectivity. Both structural and functional systems of the brain 
possess features of complex networks, such as small world properties [2]. It has been shown that pharmacological or psychological therapies can remediate sub-optimal 
network organization in patients [1]. Measures of network metrics are, therefore, of great importance for understanding the pathogenesis and treatment of brain disorders at 
network level. Mapping functional connectivity using BOLD fMRI, so far, has been the most popular method. However, given that BOLD signal changes reflect blood 
oxygenation, cerebral blood volume, cerebral blood flow (CBF), and metabolic rate of oxygen consumption [3], their interpretation can be complex, and may also include 
a large contribution from draining veins [4]. Arterial spin labeling (ASL) is an MRI technique to measure CBF directly and noninvasively. This typically comes at the 
expense of a reduced spatial and temporal resolution. However, previous results have demonstrated that ASL can successfully extract equivalent networks to BOLD data, 
yet with better sensitivity in brain regions with high-gradient susceptibility differences [5]. ASL studies of the small-world properties of the resting-state networks would 
allow us to investigate the intrinsic relationships between CBF and network metrics (such as degrees, characteristic path-lengths, etc.) more directly and interpretably. In 
this study, we investigate the connectome using ASL, which allows us for the first time to measure the network metrics of human brain during resting state based on ASL 
data, as well as to investigate the relationship between CBF and certain network metrics. 

Materials and Methods: Ten subjects were scanned on a 3T Siemens Trio scanner with a whole-brain 3D-GRASE pCASL 
sequence [5]. Two ASL datasets (60 pairs each) were collected with two different post-labeling delays (PLD): short PLD 
(higher SNR and more suitable for the connectome) and long PLD (better for CBF quantification). Short PLD: TR/TE 

=3750/56ms, resolution=4x4x6mm3, 20 slices, matrix size =64x51, PLD=600ms, with labeling duration = 1284ms. 
Background suppression (BS) was achieved using inversion-times of 1913ms and 523ms. Long PLD: Labeling duration= 
1584ms, PLD=1540ms, BS inversion-times: 1800 and 520ms, otherwise identical to the parameters of short PLD. In 
addition, anatomical and calibration (M0) images were acquired for registration and CBF quantification. Image analysis: 
ASL perfusion images with short PLD were pre-processed as follows: realignment followed by coregistration, 
normalization (MNI template, 61×73×61), de-trending and band-pass filtering. To remove intravascular contributions, 
independent component analysis was performed using the FSL MELODIC software. The pre-processed ASL perfusion 
images were employed as inputs to obtain adjacency matrix at individual level (the AAL template [6] was used to define the 
nodes). The region-wise mean time-courses were extracted to estimate connections among regions based on Pearson’s 
correlation coefficients. A group-level adjacency matrix was obtained by averaging 10 individual-level matrices, which was 
then employed for small-world network analyses. For ASL data with long PLD, region-wise CBF were estimated for each 
subject. A sigmoid function was employed to estimate the relationships between network metrics, such as degrees (Ki), 
characteristic path length (Lpi), vulnerability (Vi) and eigencentrality (ECi), and region-wise mean CBF estimates by 
nonlinear fitting. 

Results: Fig. 1 shows the adjacency matrix at group-level. For 
illustrative purposes, nonlinear fitting outcomes of 4 network 
metrics vs. CBF of 4 subjects (randomly selected) are shown in 
Fig. 2; all network metrics vs. region-wise CBF estimates show 
nonlinear patterns for the 10 subjects. However, the nonlinear 
pattern of Lpi (negative) is different from three other metrics 
(positive). The mean R-squares across the 10 subjects are 0.26, 
0.31, 0.29 and 0.29 for nonlinear fitting outcomes of 4 network 
metrics, Vi, Lpi, Ki and ECi, vs. CBF, respectively. 

Discussion: In this study, investigations on small-world network 
properties of ASL perfusion data have been conducted. The 
small-world network properties (Ki, Lpi, etc.) of ASL data are 
consistent with previous findings from BOLD data [6]. 
Interestingly, the outcomes on the relationships between 4 
specific network metrics and region-wise CBF demonstrate that 
consistent nonlinear patterns exist across 10 normal subjects. In 
contrast to the positive nonlinear pattern of other network metrics 
(Vi, Lpi, Ki and ECi), Lpi shows a negative nonlinear pattern. This 
finding is well in line with the previous finding that ‘hub’ regions 
tend to have higher values for degree, vulnerability and centrality, 
but lower values for characteristic path length [6, 7], along with 
higher metabolic energy consumption (and CBF) [8]. While the 
sigmoid model is not ideal for Ki and ECi, and further work is 
required to identify an optimal model, it is clear from the data that 
such a model will be non-linear. To our knowledge, this is the first 
study that unravels the intrinsic relationships between specific 
network metrics and CBF estimates. This should provide useful 
information to further our understanding of the metabolic energy 
consumptions with which the brain can maintain normal 
cognition with the lowest cost. It should also have applications for 
clinical studies on brain disorders.   
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Fig.1 Group-level adjacency matrix (n=10);
threshold R=0.6. 

 

 

 

 

 

 

 
  

 

 

 

 

 

 
 

 

 
Fig. 2 Nonlinear fitting of 4 network metrics (Vi, Lpi, Ki and ECi) vs. CBF in 4 random subjects. 
Each row represents data from a single subject. 
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