
 
Fig. 1. Raw IC maps from (a) MELODIC and (b) 
infomax algorithm.   

Fig. 2. The mean perfusion map, the fluctuation 
map of the ICs’ signal model, and the fluctuation 
map of residual noise from the ASL data using a 
Gaussian kernel FWHM of (a-c) 6 mm and (d-f) 
12 mm.  
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Introduction: Spontaneous signal fluctuations in the resting brain have been studied widely using blood oxygenation level-dependent (BOLD) 
MRI1. Recently the arterial spin labeling (ASL) technique has shown the capability to detect the large-scale organized resting state networks, 
very similar to the resting state networks detected from BOLD2. Quantitative physiologic measurement of signal fluctuations from the resting 
state networks is an important and understudied area that may enable improved understanding of brain function. ASL perfusion 
measurement can provide a direct quantitative measure of signal fluctuations in physiologic units. Here, we quantify the signal fluctuations of 
resting state networks using the ASL technique.  

Methods: Resting-state pulsed-continuous arterial spin labeling (PCASL)3 data 
was acquired in 20 healthy volunteers (30.3 ± 4.6 years old) on a GE 3 Tesla 
scanner. Thirty-nine 3D images were collected for each volunteer. The imaging 
protocol and preliminary results in a small cohort were previously reported 
2,4. Seven common resting state networks were detected from our ASL data 
using MELODIC ICA4.  
 As is common for resting state analysis software, it is difficult to 
convert from the resting state independent components (ICs) to the 
corresponding perfusion signals within MELODIC. Instead, an open access ICA 
program using the infomax algorithm5 was used to separate networks and perform the 
exact steps to convert the ICs back to the original perfusion signals. The grand mean 
perfusion of each smoothed and resampled 4D volume was scaled to the median 
mean perfusion of all 20 subjects. The scaled perfusion volume was demeaned by 
subtracting the mean signal over time at each voxel. The preprocessed ASL data were 
then input to the ICA program. This ICA algorithm was performed on the two-dimensional 
preprocessed data formed by temporal concatenation. The group ICA signal matrix S 
(size N×P, N=780, P= the total number of spatial points in each volume) can be 
decomposed as: S= M×C+ε, where M is a mixing matrix (size N×Q, Q=the number of 
ICs), C is the IC matrix (size Q×P), and ε is the residual noise.  
  Resting ASL signals fluctuate with two sources of signals: resting state ICs 
(M×C) and residual noise (ε).  To compare the relative contribution of the resting state 
ICs and residual noise, signal fluctuation maps of the resting ICs and the residual noise 
were calculated. The fluctuation map of resting ICs was calculated as the standard 
deviation of the temporal signals from the signal model M×C. The residual noise was 
calculated by subtracting the ICs’ signal model M×C from the demeaned ASL signal. To 
evaluate the effects of image smoothing on the two fluctuating sources, two different 
smoothing kernels of FWHM 6mm and 12mm were used to preprocess the ASL data 
before the infomax ICA analysis. The signal fluctuation map for each individual IC was 
also calculated as the standard deviation of the temporal signals from the IC. The relative 
signal fluctuation map was calculated relative to the mean perfusion map. The mean 
perfusion map was averaged over the time points and subjects. 

Results & Discussions: The ICs calculated from the infomax ICA algorithm were similar 
to those calculated from the MELODIC (Fig. 1). The ICs fluctuation map and residual noise 
fluctuation map are shown in Fig. 2. The ICs fluctuation map were approximately 10% of 
the gray matter perfusion (see the gray-level scales). The IC fluctuations were much larger 
than the residual noise fluctuations. With 12mm smoothing kernel, residual noise 
fluctuation were reduced (signal of gray matter: 49 vs. 82) but the IC fluctuations remained 
similar (signal of gray matter: 121 vs. 127). This indicates that the resting state structured 
noise in ASL data is large relative to the residual noise and it cannot be reduced with larger 
smoothing kernels. The fluctuation map for each individual IC is shown in Fig. 3. The ICs 
fluctuated up to 18% of the perfusion signal at a pixel-by-pixel level. Regional signal 
fluctuation amplitude varies between the different networks (Table 1). The lateral and 
medial visual networks showed the largest regional relative fluctuations. 

Conclusions: 3D ASL perfusion data can provide a quantitative measurement of signal 
fluctuations within the resting state networks. This capability may be used to further study 
the physiology of the fluctuations and for improved noise reduction and statistical analysis of future ASL studies. 
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Fig.3. The relative signal fluctuation maps of the 
individual ICs to the mean perfusion.  

Table 1. Regional relative fluctuation of resting state networks 
Relative 
fluctuation 

Default 
mode 

Lateral 
visual 

Medial 
visual 

Left 
lateral 

Right 
lateral 

Sensory 
motor 

Ventral 
stream 

 7.68% 10.58% 11.15% 8.08% 3.55% 7.45% 6.64% 
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