THE COMPARISON STUDY OF ASL AND DCE MRI FOR RENAL GLOMERULAR FILTRATION RATE (GFR) MAPPING

Jing Wang¹, Yudong Zhang², Jue Zhang¹, Xiaoying Wang³, and Jing Fang¹

¹Academy for Advanced Interdisciplinary Studies, Peking Unversity, Beijing, China, ²Department of Radiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China, Beijing, China, ³Department of Radiology, Peking University First Hospital, Beijing, China

Introduction

The quantitative measurements of renal oxygenation and hemodynamics are important in clinical trials. In this study, we utilized PASL technique with variable echo time acquisitions (VTE-ASL) to label blood as an endogenous tracer in rabbit kidney, combined with a hypothetic two-compartment model to estimate the renal blood flow (RBF), renal blood R_2^* and glomerular filtration (GFR) (1). The non-contrast results obtained by VTE-ASL were further compared with the kinetic parameters measured by DCE-MRI to explore the feasibility of noninvasive renal function evaluation.

Materials and Methods

Six New Zealand white rabbits (male, 2.5–3.0 kg) were included in this study; all the studies were performed on a GE 3T scanner. The ASL images were acquired with variable TEs: 20, 40, 60, 80, 100, and 120ms, with other imaging parameters as: TR 3000ms, flip angle 90°, 5mm slice thickness, inversion time (TI) :1500ms. The Δ M images were used to monitor the signal changes at different TEs for robust blood and urine components model fitting (Fig. 1). A 3D coronal SPGR protocol with flip angle 3° and 15° was performed for tissue T₁ estimation, which will be used for RBF quantification (2). Blood R₂* and the dimensionless extraction fraction E maps were obtained by fitting the signal time course to a two-compartment cortical model (2CC). The GFR map was estimated pixel-by-pixel based on the E and RBF maps.

Low dose DCE-MRR (0.05 mmol/kg Gd-DTPA) was performed following VTE-ASL scan to evaluate the glomerular filtration function, which involved a 4 minutes 3D SPGR (flip angle 15°, TR/TE 3.1/0.9 ms) scan with temporal resolution as 4s. The tracer-kinetic modeling of glomerular filtration is based on a two-compartment exchange model (3, 4), defined by three parameters: renal blood volume fraction (VP), tubular volume fraction (VE) and extraction-flow (EF), actually reflecting GFR. Following T_1 correction, Pixel-wised VP, VE and EF maps were fitted with the Levenberg-Marquardt nonlinear least squares algorithm.

Results

The cortical RBF were estimated as 313.2±58.9 ml/100g/min, which is similar to previous studies (5). The typical GFR_{ASL} value, calculated based on extraction fraction E (0.18±0.10 in cortex) and renal plasma flow (RPF), was reported as 27.1±4.2 ml/100ml/min in cortex, which is also confirmed by previous study using invasive methods (1). The blood R₂* estimated by Δ M signals was shown Fig.2c, which reflects the tissue oxygen level. The GFR_{DCE} was reported as 31.6 ± 6.2 ml/100g/min. GFR_{ASL} and GFR_{DCE} were highly in agreement with each other.

Discussion and Conclusion

Previous study indicates that the urine has a long T_2 time (>400ms) (6), thus, GFR could be estimated noninvasively based on ASL method with variable TEs. Compared with DCE-MRR, the GFR values of the six rabbits obtained by VTE-ASL suggest that there is much comparability between noninvasive and established invasive methods. The preliminary results, indicate that the noninvasive VTE-ASL may be valuable for obtaining quantitative GFR, RBF and blood R_2^* maps simultaneously. Further studies in a larger population are undergoing to test the feasibility of the proposed method.

Figure 1. (a) Raw rabbit ASL and (b) ΔM images with varied TEs. From left to Right: TE = 20, 40, 60, 80, 100, 120ms. Renal perfusion signal contrast is well demarcated.

Figure 2. (a) The typical RBF map (ml/100g/min), (b) extraction fraction map, (c) blood R_2^* map (Hz) and (d) GFR map (ml/100ml/min) produced by the two compartment model based on VTE ASL.

Figure 3. The pixel-wised (a) V_P , (b) V_E and (c) EF maps estimated from a nonlinear least squares algorithm.

References

- 1. Sourbron SP, et al. Invest Radiol 2008; 40-48.
- 2. de Bazelaire CMJ, et al. Radiology 2004; 652-659.
- 3. Paul S. Tofts, et al. JMRI 1999; 223–232.
- 4. Annet L, et al. JMRI. 2004; 20: 843-849.
- 5. Robson PM, et al. Magnet Reson Med 2009; 1374-1387.
- 6. Hamlin DJ, et al. AJR Am J Roentgenol. 1985; 585-590.