Assessment of vessel permeability by combining DCE and ASL MRI

Ting-Ting Chang¹, Alex M. Wong², Feng-Xian Yan¹, Yu-Shi Lin¹, and Ho-Ling Liu^{1,2}

¹Department of Medical Imaging and Radiological Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ²Department of Medical Imaging and

Intervention, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan

Introduction

Dynamic Contrast Enhanced (DCE) MRI has been widely applied to investigate the vascular properties of tumor (1). In particular, the transfer constant (K^{trans}) obtained from pharmacokinetic modeling of the DCE-MRI data is commonly used as a indicator for vessel permeability. However, K^{trans} is known to be also weighted by tissue perfusion (2, 3). In theory, it approximates permeability surface area product per unit mass of tissue (PS) in the PS-limited model and tissue blood flow in the flow-limited model (3). This study propose to combine the cerebral blood flow (CBF) measurement, by using the pseudo-continuous arterial spin labeling (PCASL) technique (4), and the DCE-MRI to estimate PS in brain tumors.

Methods

Eleven pediatric patients with brain tumors (age: 8.78 ± 3.93 y) participated in this study. The CBF maps were acquired at a 3T clinical scanner using a 3D FSE PCASL sequence with spiral acquisition (TR/TE = 4500ms/10 ms, post-labeling delay = 1525 ms, in-plane matrix = 128×128 , slice thickness = 5mm, 23 slices) to cover the whole brain. Before the DCE-MRI, T₁ maps were acquired by using a 3D SPGR sequence with multiple flip angles. DCE-MRI were performed by using a T₁-weighted 3D SPGR sequence (TR/TE/FA=4.9ms/1.3ms/ 30° , in-plane matrix = 256×256 , slice thickness = 5mm, 8 slices, 60 dynamics). The K^{trans}, V_e, and V_p maps were obtained by using the mTK model (5). For each subject, the CBF map was spatially coregistered with the K^{trans} map, and spatially smoothed using a Gaussian kernel of FWHM = 5mm using the spm8 (http://www.fil.ion.ucl.ac.uk/spm/)... The PS map was then calculated using the equation PS = -CBFxln(1-K^{trans}/CBF). The tumor ROI was drawn by an experienced neuroradiologist, from which mean tumor K^{trans}, CBF, and PS values were obtained for each patient.

PS(min

0.03

0.047

0.046

0.067

0.003

0.012

0.111

0.024

0.117

0.052

0.023

0.048±0.036

CBF(ml/100g

63.4

40.7

38.1

51.1

44.4

45.9

66.2

111.0

40.6

36.4

38.0

52.348±20.893

^{ans}(min

0.03

0.045

0.044

0.063

0.003

0.012

0.102

0.024

0.102

0.049

0.022

0.045±0.031

Results

	Table 1
Table 1 lists the mean tumor K ^{trans} ,	patient no.
CBF, and PS values of each patient.	1 2
The mean value of K ^{trans} was	3
approximately the same but slightly	4
lower than PS, with a 6% difference.	6 7
Figure 1 shows significant positive	8
correlations between K ^{trans} and PS	10
(the dash line denotes the line of	11 Mean±S.D
equality between x- and y-axes),	

which is expected from the nature of the calculation. For small K^{trans} values they were approximately equal to the resulted PS values. When K^{trans} values were greater, they became increasingly underestimated than the PS values. The largest discrepancy between K^{trans} and

PS in this study was 13% in a patient with mean tumor K^{trans} of 0.10 min⁻¹. No significant correlations were found between CBF and either K^{trans} or PS. Figure 2 demonstrates the post T₁, K^{trans} , CBF, and PS maps of two patients. Similar patterns were found between K^{trans} and PS maps, with slightly higher PS values for the second patient (bottom row).

Conclusion

This study proposed to utilize the PCASL technique for separating the flow weighting from the K^{trans} measurement by DCE-MRI of brain tumors. The results demonstrated that the K^{trans} well approximated vessel permeability with the PS-limited condition.

References

O'Connor JP, et al., *Nat Rev Clin Oncol* 2012;9(3):167-77.
 Tofts PS and Kermode AG. *Magn Reson Med* 1991;17:357-367.
 Tofts PS et al., *JMRI* 1999;10:223-232.
 Dai W, et al. *Magn Reson Med* 2008;60:1488-1497.
 Tofts PS. *JMRI* 1997;7:91-101.

