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Introduction: Dynamic contrast enhanced MRI (DCE-MRI) is a useful tool that can help assess vascular changes and drug efficacy, particularly in drug angiogenesis 
targeted therapies. However, in order to employ DCE-MRI successfully in multicenter trials with longitudinal measures, data acquisition and processing needs to be 
streamlined and reproducibility of results must be emphasized. The goal of this work was to evaluate different approaches for the efficient processing of DCE-MRI data. 
We evaluated 1) the use of a “raw” arterial input function [AIF] as a forcing function in the kinetic model which was compared to a forcing function based on a 2-
compartment model fitted to the same “raw” AIF data 2) the use of the signal difference [SD] method1,2 which assumes linearity between signal intensity and 
concentration compared to the standard concentration-based [CA] approach which requires accurate T1 measurements, and 3) the effect of estimating tlag, the time lag 
between the tissue and AIF uptake curves in the kinetic model, and its effect on estimates and interpretability of other model parameters, in particular the fractional 
blood plasma volume, vp.  
 

Material and Methods: This analysis makes use of simulated data in additional to data from 10 patients with liver metastases from colorectal cancer3. MRI scans 
were performed twice at baseline (within 48 hours) to establish parameter repeatability. 75 axial volumes were consecutively acquired every 4.97 s on a 1.5T Philips 
Intera system (Philips Medical Systems), using a 3D SPGR sequence (TR, 4.0ms; TE, 0.82ms; α = 20˚), and a 0.1 mmol/kg bolus IV injection of Omniscan (Amersham 
Health). Apparent concentration was derived from T1 maps4. Kinetic analysis was performed using an in-house DCE-MRI R-package5. AIFs were defined for each 
patient in the aorta according to the method presented by Roberts et al.6. A non-fitted AIF was used as a forcing function in each kinetic model used, and for 
comparison, a conventional two-compartment model was fitted to the AIF. The signal difference time curves were obtained voxel-wise by subtracting the mean voxel 
pre-contrast signal intensity (SI) to the corresponding SI time curve. Data were normalized for each patient using the first baseline, in which the peak of the first-pass 
bolus was scaled to 1mM. The resulting scaling factor was then applied to the rest of the dynamic time curves (both tissue and AIF) and used to normalize the dynamic 
data of the second baseline scan. The time lag between the tissue and AIF uptake curves was estimated on a per slice basis, using the median lesion signal.  Coefficient 
of Variation (%CV) and the Akaike Information Criterion (AIC) were calculated for each voxel to quantify parameter identifiability and goodness of fit, and to enable 
comparison between the Tofts Model (TM) and the extended Tofts model (ETM). Model parameters were derived only from tumor voxels that were defined as 
enhancing (more than 75% of the voxel’s concentration or signal-difference values were above zero). 
 

  

Results:  Fitting the AIF with a 2-compartment 
model may result in the underestimation of the 
AIF’s peak (Fig.1). As shown by simulations, 
this can lead to errors in model parameter 
estimates as compared to the use of a forcing 
function (Fig.2). 
In this study, the [SD] method resulted in less 
variability (lower % difference) in model 
parameter estimates using double baseline scans, 
when compared to the [CA] method (Fig.3).  The 
outliers in Fig.3 are largely based on lesions 
located at the edge of the FOV, and are likely 
affected by non-linearity between signal intensity 
and concentration at those locations.  
 

Estimating tlag increases mean vp estimates and 
the number of voxels in tumors where the ETM 
better fits the data compared to the TM based on 
AIC. However, this shift has no significant 
influence on Ktrans and Ve estimates (Fig.4), and 
%CVs for kinetic parameters unchanged when 
estimating the lag. Based on our simulations, if 
the time lag is not accounted for, vp values will be 
either zero or under-estimated. If the true vp>0, 
then the ETM gives more accurate estimates than 
the TM. If the true vp=0, both TM and ETM 
models converge to the same results, even for 
high levels of noise. This is true, however, only if 
time lags are taken into account; if not, the ETM 
may produce non-zero (erroneous) vp estimates. 

 
 

(1) Comparison b/w the raw apparent 
[CA] AIF and its 2-compartment model 
fit.  (2) Simulations show impact of fitted 
(2-comp model) vs. non-fitted (“raw”) 
AIF on kinetic parameter estimates (3) 
Percent variation in Ktrans and Ve b/w 
double baseline scans for the [SD] and 
the apparent [CA] methods. (4) 
Consequences of shifting the AIF: the top 
row represents the results for a non-
shifted AIF and the bottom row, results 
when tlag is estimated, where (a)(d) are vp 
maps, (b)(e) model selection maps based 
on AIC (TM in white, ETM in gray), (c)(f) 
Ktrans maps. 

 

 

Conclusion:  For future multi-center clinical trials including the use of longitudinal DCE-MRI measurements, we suggest using the [SD] method with a shifted data-
derived non-fitted AIF, as these techniques reduce the requirements for both data acquisition and modeling. As found in other studies1,7, repeatability of model 
parameter estimates with these methods is close, if not better than conventional methods. The tradeoff is some loss of precision, which is less of a concern when 
evaluating treatment effects over time. For the SD method, changes in coil placement may lead to differential scaling of AIF and tumor curves due to sensitivity (B1) 
variation that will bias quantitative measures over time. Consistency of coil placement should be emphasized in site training and may be later evaluated with the use of 
coil sensitivity maps. While Ktrans and Ve values do not seem to be greatly influenced by the time lag between tissue and AIF uptake, estimating this parameter appears 
to be key for vp estimates. Evaluating different model fits on a per-voxel basis requires additional computational time, but provides some insights on the robustness of 
parameter estimates. For voxels where the TM fits the data as well as the ETM, Vp estimates may be driven primarily by noise, and should be interpreted with caution. 
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