Simultaneous quantification of perfusion, venous oxygen saturation, and skeletal muscle T₂* in response to cuff-induced ischemia in the leg

Erin K Englund¹, Michael C Langham¹, Cheng Li¹, Emile R Mohler², Thomas F Floyd³, and Felix W Wehrli¹

¹Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²Department of Cardiology, University of Pennsylvania, Philadelphia, PA, United States, ³Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States

Introduction. Recent studies suggest that functional deficits present in patients with peripheral artery disease (PAD) may be detected by MRI measurement of parameters of vascular physiology in the lower extremity [1-4]. Through reactive hyperemia studies, it has been shown that PAD patients exhibit alterations in dynamics of perfusion [1]; venous oxygen saturation (SvO₂), a measure of vascular reactivity [2]; and skeletal muscle T_2^* , a marker of tissue oxygenation [3,4]. While parallel measures of the post occlusive time-course SvO₂ and perfusion [5], or perfusion and T_2^* [6] have been previously performed, a method for simultaneous quantification of perfusion, SvO₂, and T_2^* has yet to be established. Concurrent acquisition of these parameters would offer a comprehensive functional assessment of the peripheral vasculature. The purpose of this study was to develop a MRI pulse sequence capable of simultaneously quantifying perfusion, SvO₂, and T_2^* , to assess the sequence in healthy subjects, and to explore its results in PAD patients.

Methods. *Theory.* Simultaneous measurement of perfusion, SvO_2 , and T_2^* was achieved using an interleaved pulsed arterial spin labeling (PASL) and multi-echo GRE (Ox-BOLD) sequence, termed PASL/Ox-BOLD (Fig 1). For PASL, control and tag conditions were achieved using non-selective (NS) and slice-selective (SS) adiabatic inversion pulses, respectively. Image acquisition followed a 952 ms post-label delay (PLD) and perfusion was quantified as described in [7]. During the PLD, a keyhole Ox-BOLD sequence acquired data 3 cm distal to the PASL slice. This location was chosen to ensure perfusion is not affected by the Ox-BOLD

interleave. Ox-BOLD high frequency k-space data was filled from a reference scan. As described previously [8], the difference in phase accumulation between blood and surrounding tissue from TE1 to TE2 was used to calculate SvO₂. Magnitude signal from TE1-TE5 was fitted to a mono-exponential function to calculate T₂*. Because the NS inversion affects both the PASL and Ox-BOLD slices, only Ox-BOLD images acquired after SS inversion were used, though the interleave was run every PLD to control for MT effects.

Experimental Protocol. In order to assess the impact of the PASL interleave on SvO_2 and T_2^* quantification, and the effect of the Ox-BOLD interleave on the measurement of perfusion; results from the PASL/Ox-BOLD sequence were compared to those from a standard PASL and Ox-BOLD sequence run separately. In five young healthy subjects four consecutive acquisitions with PASL/Ox-BOLD (repeated twice), PASL, and Ox-BOLD alone were obtained; each with 1 min baseline, 3 mins occlusion, 6 mins recovery, and 1 min rest between scans. The protocol was repeated on a separate day. In three PAD patients (age = 71±2 years, ankle brachial index = 0.61 ± 0.18) data was acquired with PASL/Ox-BOLD during 2 min

Fig 1. PASL/Ox-BOLD pulse sequence diagram with relative slice positions indicated on the left.

Table 1. Mean (SD) of time course parameters. ¹ represents a	
statistically significant difference between methods.	

······································						
	Young Healthy Subjects			PAD		
	PASL	PASL/Ox-	Ox-BOLD	PASL/Ox-		
		BOLD		BOLD		
PHF (mL/min/ 100g)	34.5 (5.0)	35.0 (3.9)		30.7 (4.3)		
TTP (s)	20.9 (7.7)	19.2 (5.8)		100.7(38.3)		
$t_s(s)$		11.7 (3.0)	10.7 (1.6)	34.0 (15.1)		
OS (%HbO ₂)		17.4 (6.0)	16.1 (5.2)	25.9 (8.1)		
Relative T ₂ * _{min}		0.93 (0.03)	0.93 (0.02)	0.95 (0.01)		
Relative T ₂ * _{max}	/	$1.13(0.05)^{1}$	$1.17 (0.05)^{1}$	1.11 (0.03)		
$t_{max}(s)$		30.1 (5.6)	29.8 (8.2)	97.3 (47.4)		

baseline, 5 min occlusion, and 6 min recovery. For both healthy subjects and patients, reactive hyperemia was induced with a cuff (Hokanson) secured around the superior thigh, inflated to >200 mmHg. An 8-ch Tx/Rx knee coil (Invivo Inc.) was used for image acquisition at 3T (Siemens) with the following parameters: **PASL**: partial Fourier GRE-EPI with TR/TE=1000/9 ms, FOV=25×25 cm, ST=1 cm, matrix=80×50 (recon to 80×80), BW=1562.5 Hz/pixel; **Multi-echo GRE**:

TR/TE1/TE2/TE3/TE4/TE5= 38.12/3.78/6.99/12.32/19.32/26.32 ms, FOV=96×96 mm, ST=1 cm, matrix= 96×24 (keyhole, recon with ref scan to 96×96), BW= 694 Hz/pixel. Perfusion was calculated in a ROI in the gastrocnemius, and time to peak (TTP) and peak hyperemic flow (PHF) were determined. SvO₂ was quantified in the larger peroneal vein, and washout time (t_s), time to minimum SvO₂, and overshoot (OS), SvO_{2max}-SvO₂ at baseline, [9] were calculated. A ROI was drawn in the soleus muscle, T_2^* was calculated, normalized to the average baseline value, and relative $T_2^*_{min}$, relative $T_2^*_{max}$, and time to $T_2^*_{max}$ (t_{max}) were determined. A paired Student's t-test was used to test for differences in measured values in the healthy subjects.

Results. Fig 2 (a) compares average perfusion measured using PASL and PASL/Ox-BOLD; (b) shows SvO_2 , and (c) shows relative T_2^* measurements made with Ox-BOLD and PASL/Ox-BOLD. In all cases, error bars indicate SD. These average time courses illustrate the similarities of PASL/Ox-BOLD to PASL or Ox-BOLD, even across subjects. Table 1 lists mean (SD) of the quantified time course parameters in both the healthy subjects using all pulse sequences, and in PAD patients using PASL/Ox-BOLD. In healthy subjects, no significant differences in perfusion or SvO2 parameters were detected (p>0.05). The only significant difference was in relative T_2*_{max} , where Ox-BOLD was always higher than PASL/Ox-BOLD (p<0.01). Qualitatively comparing PAD patient data to healthy subjects' results, TTP, t_s, and t_{max} are delayed, PHF and T₂*_{max} are decreased, and OS is increased. Discussion. In healthy subjects, perfusion values for PHF and TTP agree with literature reported values [7]. The oximetry data, t_s and OS match with measurements made in young healthy subjects in the femoral vein [9]. T2* data are also in agreement with previous studies [3], and although T2*max differs between PASL/Ox-BOLD and Ox-BOLD, $t_{max}\xspace$ is preserved. The reason for the difference in T2*max requires further investigation. This work suggests that the simultaneous quantification of perfusion, SvO_2 , and T_2^* is possible

with PASL/Ox-BOLD. In PAD patients a blunted and delayed hyperemic response is expected [1,3,9], and this is seen in all parameters with the exception of OS in SvO_2 . These data represent a small cohort of patients with varied disease severity, yet even still a marked difference can be seen. Recruitment of additional PAD patients is ongoing. **Conclusion.** PASL/Ox-BOLD is capable of simultaneously quantifying perfusion, SvO_2 , and skeletal muscle T_2^* and can be used to capture the dynamic changes that occur in the lower extremity during reactive hyperemia.

References. [1] Wu et al, JACC 2009; [2] Langham et al, ISMRM 2011; [3] Ledermann et al, Circ 2006; [4] Potthast et al, Gefäße 2009; [5] Englund et al, ISMRM 2012; [6] Walvick et al, ISMRM 2012; [7] Raynaud et al, MRM 2001; [8] Fernandez-Seara et al, MRM 2006; [9] Langham et al, JACC 2010. *Acknowledgements*. NIH Grants R01HL075649 and 5T32EB 009384.