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Target audience Scientists and clinicians with interest in perfusion MRI. 
Purpose QUASAR ASL permits the extraction of both Arterial Input Function and Tissue signal from 
data in order to estimate cerebral blood flow (CBF) using deconvolution techniques [1]. The transit 
delay from the chosen AIF to the tissue will cause the AIF to decay according to the blood T1 enhanced 
by the look-locker readout used. This drop in ASL signal requires correction by scaling the estimated 
CBF after deconvolution [1]. Hence accurate estimation of delay is vital during the analysis process. The 
motivation of our study was investigate the accuracy in delay and CBF estimation as illustrated in [1] 
and assess the performance of stable spline (SS) method [2], a non-parametric deconvolution approach 
based on kernel methods already used in DSC [3].   
Methods Simulations: The ASL signal was simulated according to the kinetic model from Buxton [4] 
under several conditions, including different levels of perfusion (90,50,20 ml/100gr/min), noise 
(SNR=100,20,10,5), delays (0-0.6s) with no dispersion and  in presence of dispersion. A gamma 
dispersion kernel (s=exp(2); p=0.1) was used to describe the AIF kinetics [5]. Monte Carlo simulations 
with 100 realizations were performed for each combination. Clinical data: A subset of the QUASAR 
reproducibility data set presented in [6] was used, comprising seven subjects each scanned four times, 
giving a total of 28 datasets. Analysis: conventional QUASAR ASL analysis was performed using edge detection for delay estimation followed 
by oSVD deconvolution as in [7]. SS is an alternative deconvolution method that was formulated to estimate the residue function (R(t)) in a 
Bayesian context, solving a Tikhonov like optimization problem. R(t) was described by two components,  a stochastic and a deterministic part. 
The stochastic component includes a prior knowledge on R(t), describing it as a zero-mean Gaussian random process with a Wiener process as 
auto-covariance (smoothness) and an opportune transformation in the time domain to achieve the BIBO-stability of the system [2]. The 

deterministic part was modelled as an exponential function. SS analysis for QUASAR ASL consists 
of a 3 step procedure. Firstly, we run SS obtaining a first approximation for R(t). Re-convolving the 
estimated R(t) with the AIF produced a new denoised version of the original signal. Secondly, in 
order to take into account the delay between the AIF and tissue signal, we estimated the delay by 
computing the cross-correlation between the denoised signal and the AIF, both having been 
smoothed using the first approximation of the wavelet transform of the signals (Haar, 3 levels). 
Then we translated the AIF using the estimated delay and re-computed the R(t) with the SS 
deconvolution. The root mean square error (RMSE) of the peak of R(t) (RMSEp) was computed 
between the true simulated value and SS and oSVD estimates in order to evaluate the bias on CBF. 
To assess the best approximation of the true R(t), the RMSE of the curve (RMSEc) and the RMSE 
of the area under the curve (RMSEa) were calculated. The RMSE of the delay (RMSEd) obtained 
with standard edge detection implemented as in [1] and with the proposed method were computed. 
The impact of delay estimation on CBF quantification was determined computing the percentage 
differences between unbiased CBF (obtained by using the true simulated delay) and CBF using the 
delay estimated with SS and oSVD respectively. The method scoring the lowest RMSE was 
considered better and percentage 
was calculated as a measure of 
success. 
Results Fig. 1 illustrates the error 
in delay propagated to CBF 
estimation. Simulations: Table 1 
summarizes the success 
percentages. Errors in the 
estimation of delay led to bias in 
CBF quantification of 75-82% 
with edge detection and 31-42% 
with SS (25th-75th percentile of difference percentages distribution) Fig. 2 shows the deconvolved 
R(t) (median [5th-95th percentile]) showing a wide variation after delay correction for oSVD. 
Clinical data: Fig. 3 shows GM CBF maps from a representative subject. CBF mean ± SD in GM 

was computed with both SS and oSVD for each subject. SS CBF values (61±11 ml/100g/min) showed a significant increase (p<0.05) compared 
to oSVD (51±10 ml/100g/min). Delay estimation showed a lower trend for SS compared to edge detection but not statistically significant. 
Discussion Here we present an alternative to the conventional method for estimation of the CBF and the delay from QUASAR data. R(t) 
approximation from SS was closer to the true simulated value in almost all of the cases. SS showed more accurate delay estimates compared to 
edge detection in the large majority of the simulated data. For both methods presence of dispersion led to a systematic overestimation of the 
delay. However, SS delay estimates were less biased even in presence of dispersion (90% of the cases). SS provided physiologically realistic R(t) 
that oSVD could not provide when applied to real data. GM CBF values were significantly higher than oSVD ones within physiological range. 
Conclusion Delay estimation between AIF and tissue is a significant issue for the precise assessment of CBF from QUASAR data. It may be 
particularly problematic in the presence of pathologies, where the mixed effects of dispersion and delay might be more evident. Here we show 
that SS can give reliable estimates of delay and a reliable approximation of the true R(t) in most of the simulated cases. This was confirmed also 
in presence of dispersion, which remains be investigated further within the SS method. Its application in clinical environment is promising in 
light of its physiological results and low computational cost (30 min for each subject). 
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Fig. 3 Subject #4 - CBF maps obtained with oSVD (left), Stable 
Spline (middle) and the relative ratio between the two methods (SS-
oSVD)/oSVD) (right). 

Fig. 2 Estimation of R(t) for simulated GM
tissue, SNR 10, delay 0s (top) delay 0.6s
(bottom). SS (Blue) oSVD (Red)
Confidential interval and median value. With
correction for delay (right) and without (left) 

Tab.1 Performance index of results in
simulated data. RMSE between true peak
level, delay and curve and estimated one with
both oSVD and SS  

Success % oSVD SS 
RMSEp 26% 74% 
RMSEc 5% 95% 
RMSEa 4% 96% 
RMSEd 12% 88% 

Fig. 1 The red curve shows the total 
error in CBF quantification as function
of error in delay estimate. In blue the 
influence of the Look-Locker readout 
influence and in cyan the T1 decay. 
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