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Introduction:  Tractography allows the segmentation of the white-matter tracts of the brain, which enables in-vivo studies of brain connectivity and tract-specific 
white-matter microstructure.  Typically tracts are manually segmented using regions of interest (ROIs), which allows selection of the subset of streamlines that pass 
between the regions [1].  Well-known limitations of this approach are that it requires good anatomical knowledge and that it is time consuming.  More generally, false-
positive streamlines are also problematic when segmenting tracts.  Neighbourhood tractography (NT) [2,3] attempts to overcome these limitations by using reference 
tracts to describe the paths of the major white-matter structures.  The method searches for the streamlines in the test data that match these reference tracts.  Later work 
extends the approach to include models of dispersion that allows the filtering out of anatomically unfeasible streamlines.  The main benefits of this approach are that the 
process is highly automated, gives reproducible results and is portable between subjects. However, existing NT methods seed tractography from a single seed-voxel 
defined by the model and therefore tend not capture the full extent of the white-matter tracts.  Here, we extend the NT algorithm further to exploit whole-brain 
tractography in order to increase the extent of the tract captured by the model and compare it to the single-seed NT approach. 
Methods:  The algorithm is trained using diffusion MRI datasets from eleven subjects.  First, tractography is seeded in all white-matter voxels to generate a set of 
streamlines across the whole brain to use as training data. The tract of interest is then manually segmented for each training dataset, which provides a set of streamlines 
with which to obtain a reference tract and model of dispersion between the reference and “candidate” tracts.  Since streamlines are seeded across the brain, the seed 
point on a given “candidate” streamline is not guaranteed to be in the same relative location along the tract as the seed of the reference tract. To overcome this problem, 
we define an “anchor point” on the candidate tract, which determines the point on the streamline that is best matched to the seed point on the reference tract. In this 
work we use the training data to define a new reference tract. The median streamline of the streamlines belonging to the tract of interest is found for each subject and 
transformed into standard space. The median of these medians is then used as the reference tract and the dataset from which the reference tract was derived is removed 
from subsequent training.  Finally, the remaining training streamlines are used to estimate a model of dispersion based on the approach described in [3]. Here, the model 
is updated to incorporate information about the displacement of the anchor points of the candidate streamlines from the seed point of the reference tract. This allows the 
model to disregard streamlines that are far from the tract of interest. 

To test the method, we compare segmentations generated using whole-brain NT to those from the single-seed NT algorithm [3].  Both methods use the same 
reference tract and their models are trained using 11 of the datasets; the remaining dataset is used for testing the models.  Tractography was seeded in all voxels with 
FA>0.4.  The tracts chosen for the comparison are the left arcuate fasciculus (af), left inferior longitudinal fasciculus (ilf), left uncinate fasciculus (uf) and genu of the 
corpus callosum (gcc). 
Data:  Data were acquired for 12 healthy volunteers (5 female; mean age 28.27±3.23 years) on a Siemens Avanto 1.5T scanner. The diffusion sequence consisted of 60 
gradient directions at b=1000 s mm-2 with 3 additional b=0 images for normalisation.  Reconstructed image resolution was 2.5×2.5×2.5 mm.  Total scan time was 
approximately 20 minutes. 
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Results:  Figure 1 shows segmentations of the reconstructed tracts using (top) the whole-brain NT algorithm and (bottom) the single-seed NT approach for the test 
dataset.  The red streamlines show the segmentation of the various tracts for both algorithms.  The segmentations from the single-seed algorithm are very narrow at the 
seed location, where the streamlines must go through the seed voxel, and contain far more false-positives than the whole-brain NT algorithm. 
Discussion & Conclusions:  This work shows that combining whole-brain tractography with the NT algorithm results in good coverage of tracts of interest while 
maintaining many of the benefits of the original single-seed NT approach. Although user input is required for the training step, after the model has been generated the 
process is completely automated and requires no further input from the user. In future work we aim to improve the method by implementing an unsupervised algorithm 
for training the model, which will completely automate the procedure. 
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Figure 1 – Examples of 
segmentations for the 
(from left to right) gcc, ilf, 
uf and af using (top) 
whole-brain NT and the 
(bottom) single-seed NT 
algorithm.  For the whole-
brain NT segmentations, 
red streamlines indicate 
matches to the tract of 
interest; other streamlines 
are shown in black.  The 
segmentations from the 
single-seed NT algorithm 
are overlaid onto tract 
density images for clarity. 
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