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Introduction: In diffusion MRI, Spherical Deconvolution (SD) was proposed to estimate the fiber Orientation Distribution Function (fODF)  based on 
spherical deconvolution using a single-fiber response function [1,2]. The peaks or the shape of fODFs can be used to infer local fiber directions. 
Constrained Spherical Deconvolution (CSD) [1], which takes into consideration the non-negative of the fODF, is the most widely used method among SD 
variants. Although CSD is capable of accurately determining fiber directions, it is susceptible to false positive peaks especially in the regions with low 
anisotropy. This is a common drawback of all existing SD-based methods. Moreover, in practice the fODF estimated using CSD still has significant 
negative values. We propose a method called Non-Negative Spherical Deconvolution (NNSD) to solve the above two problems. Based on a Riemannian 
framework of ODFs [3] and Square Root Parameterized Estimation for non-negative definite Ensemble Average Propagator [4], NNSD is formulated 
such that the non-negativity of the fODF is guaranteed with largely reduced false positive peaks. 

Methods: We represent both the fODF and the signal from a single fiber along the z-axis (i.e., the kernel) using Spherical Harmonic (SH) basis with the 
maximal order , i.e. ∑ c Y, 	and ∑ h Y, , respectively, where 	is a unit vector and Y ∙  is the SH basis with order l and 
degree m. Based on the theoretical results in [1,2], the MR signal attenuation is reconstructed using the spherical convolution between the fODF and the 

kernel as ∑ c h Y, . In NNSD, we estimate instead the square root of the fODF [3,4], i.e. ∑ c Y, . It can be proved 

that in this case the convolved signal is ∑ ∑ ∑ c c Q, h Y,, , where Q Y Y Y d 	 is a 

mathematical constant, c 	,… , c 	  is the unknown coefficient vector, and for each is a fixed symmetric matrix, 

i.e. ∑ , h Q Y . We then estimate the parameter 	from the measured diffusion signal vector E ,… , E 		by minimizing J ∑ E λ         s.t. ‖ ‖ 1 

where	  is the Laplace-Beltrami regularization diagonal matrix with element	 l l 1 . Since fODF is a probability density function and SH is an 
orthonormal basis, we have the constraint ‖ ‖ 1 [3,4]. Riemannian gradient descent on the sphere is performed to minimize the above cost function 
[4].	 1,0,… ,0 , indicating isotropic fODF, is used for initialization. The fODF is recovered by squaring the square root of the fODF naturally resulting 
in non-negativity of the fODF.  

Experiments and Results: The proposed NNSD method was validated using both synthetic data and real data. The synthetic DWI data was generated 
based on a mixture of tensors with eigenvalues	 1.7,03,0.3 10 mm /s, with a b-value of 1500s/mm , and with 81 directions non-collinear gradient-
sensitized directions. This data was perturbed with Rician noise with a low SNR=10.The SNR is defined as the ratio between the standard deviation of 
the complex Gaussian noise and the baseline signal without diffusion weighting. NNSD were compared with the state-of-the-art CSD using the same 
fiber kernel estimated from the voxels with FA larger than 0.8. The CSD and the kernel estimation implemented by their authors in MRtrix 
(http://www.brain.org.au/software/mrtrix/) were used. For fair comparison, we chose for both methods a maximum order of 6 for the SH basis. We 
intentionally set λ 0 so that NNSD can be compared with CSD with no smoothness regularization. The results are shown in the left two subfigures of 
Fig.1. The intensities of the background image represent the Generalized Fractional Anisotropy (GFA) [5] values calculated from the fODFs. The fODF 
glyphs were directionally colored. It can be observed that in both single-fiber and crossing regions, NNSD and CSD both can correctly detect the local 
fiber orientations. The fODFs computed by NNSD however do not contain any negative values, as opposed to CSD. In more isotropic regions, the fODFs 
given by NNSD have significantly lower GFA than those by CSD, signifying the fact that NNSD removes a significant amount of false positive peaks. 
Evaluation was also performed using real human data with a b-value of 2000	s/mm , 120 gradient directions, 2mm isotropic voxel dimensions, 
TR/TE=124,000ms/116ms. We used the same parameters as those in the synthetic data for CSD and NNSD. The results are shown in the right two 
subfigures in Fig.1.CSD results in a significant amount of false positive peaks, which is especially evident in the regions with low anisotropy, as indicated 
by the high background GFA values. NNSD obtains a very clean fODF field with similar peaks as detected by CSD in the high anisotropic regions and 
more isotropic fODFs in the isotropic regions, such as CSF and grey matter.  

Conclusion:We have proposed a novel Spherical Deconvolution (SD) method called Non-Negative SD (NNSD) to overcome the two main limitations of 
existing fODF estimation methods. First, NNSD guarantees that the estimated fODFs are non-negative across the whole continuous spherical domain. 
Second, NNSD reduces significantly the false positive peaks that are prevalent in methods like CSD [1]. The clean fODF field given by NNSD will help 
reducespurious fiber tracts in tractography algorithms. 
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Fig. 1.  CSD and NNSD results for synthetic data (two left panels) and real data (two right panels). Min-max normalization was not performed. 
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