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Purpose This work is the first to explore the diffusion weighted (DW) MR signal of cancer cell 
lines with a selection of multi-compartment diffusion models, adapting a method for diffusion 
model identification in brain tissue1, but which is also able to incorporate the complex structure of 
tumours. Characterisation of colorectal tumour microstructure could be used to assess response to 
treatment2. Most previous cancer cell classification studies involve invasive histological methods 
that alter the state of the sample. This study uses DW-MRI to quantitatively characterise the 
microstructure of colorectal tumours non-invasively.  
Methods We evaluated two human tumour xenograft models that have previously been used as a 
system to explore differential tumour pathophysiology3. We constructed two- and three-
compartment models of the DW signal from combinations of simple models of diffusion inside 
and outside cells. We defined a DW-MRI protocol that allows evaluation and comparison of all 
our models using in vivo data from mice bearing the cell lines. We then used the best-ranked model to 
suggest which features of the cellular architecture cause the differences in the raw signals. 
Tissue Models We model tumour microstructure with up to three compartments. Each compartment provides 
a separate normalized MR signal Si, i=1, 2, 3. The total diffusion MR signal for a multi-compartment model is 
the weighted sum of the signals from each compartment, with weights summing to 1. Figure 1 shows the 
candidate models for each compartment. We investigate the combinations of four basic models. The first two 
are diffusion tensors (DT)4 with different constraints: the ‘Ball’, which is isotropic, and the ‘Zeppelin’, which 
is anisotropic but cylindrically symmetric. The other two models are models of restricted diffusion: Behrens’ 
‘Stick’ model5 which describes diffusion in an idealised cylinder with zero radius and ‘Sphere’ model, which 
has particles diffusing inside an impermeable sphere of radius R6 using the Gaussian phase distribution 
approximation. All models are used in weighted combinations and have different intrinsic diffusivities. In 
total we consider 18 multi-compartment models. 
Biological Tumour Models Two human colorectal adenocarcinoma cell lines, LS174T (LS, 
n=3) and SW1222 (SW, n=3)3, were injected subcutaneously in the flank of 2-month-old 
nude mice. These two cell lines produce tumours with differing microstructure: SW 
tumours are highly differentiated with ductal features that closely resemble the tissue of 
origin, while LS tumour cells are poorly differentiated 3. Animals were scanned when the 
tumours were ~15 mm in diameter. 
MRI Acquisition DW-MR images of the six mice were acquired in vivo, using a small bore 
9.4T scanner. We use the pulse-gradient spin-echo (PGSE) sequence for 46 diffusion 
weightings: with diffusion times ∆=10, 20, 30, 40ms, gradient durations δ=3ms for all ∆ 
and δ=10ms for ∆=30, 40ms. Gradient strength G varied from 40 to 400mT/m in ten steps 
of 40mT/m. Diffusion gradients were placed along the three imaging coordinate axes. We 
normalise the data for T2 dependence. We also perform a separate diffusion tensor imaging 
(DTI) acquisition of 42 directions with b value 2.2x109s/m² and six b=0 measurements. The 
field of view is 25x25mm, the matrix size is 64x64 and 5x0.5mm slices. The acquisition 
per animal was 2 hours. We manually segment a tumour region of interest (ROI) that 
excluded surrounding skin (Fig.2a).  
Model fitting We fit each model to the combined DW 
and DTI data by minimising the sum of squared errors 
using a Levenberg-Marquardt algorithm with the offset 
Gaussian noise model. We choose the best-fit 
parameters after 1000 perturbations of the starting point 
to avoid local minimum. 
 

Results We averaged the data contained from all voxels 
within each ROI, referring to LS datasets as LS1, LS2, 
LS3 and SW as SW1, SW2, SW3. The raw DW signals 
show observable differences between the two cell lines, 
illustrating the sensitivity of the signal to tumour 
microstructure (Fig.2b). The Bayesian information criterion (BIC)7 evaluates the models accounting for varying complexity. Table 1 presents the best-ranked models for 
all cell lines with their BIC score. The ranking exhibits only small variations between datasets. The model that best describes both cell lines was the three-compartment 
BallStickSphere model (Fig.3). Figure 4 shows the parameters of the best model for both cell lines. All compartment diffusivities (d1=dBall, d2=dStick, d3=dSphere) 
are larger in LS than for SW. We see the same observable differences in the estimated radius, where for LS R is much larger and has a higher standard deviation than 
for SW. We do not see immediate differences in the volume fractions of the two cell lines. 
 

Discussion & Conclusions The key conclusion is that we observe restriction in all tumours as all of the top models contain the Sphere. This is strong evidence for an 
isotropically restricted signal, most likely inside the tumour cells. Weak anisotropy is also observed, since the Stick is also favoured in the ranking, however with the 
lowest volume fractions. The parameter estimates appear consistent within tumour types, however we can also identify differences between the types. The parameters 
that can potentially characterise the two cell lines are the intrinsic diffusivities, and the radius R, that both appear much larger in the LS samples than the SW. Future 
work will validate these differences with more samples and histology to find a reliable model for designing economical imaging protocols for tumour characterisation. 
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Fig.1 Compartment models. The signal for the DT models is S=exp(−bGT

DG ), G=gradient direction, b=weighting factor, I=identity tensor, 

n=principal direction of the cell (defined by θ, φ), d, d∥=diffusivity 

Fig.4. Charts showing the estimated model parameters for all samples from the best model 

Fig.2 a) Normalised log signal of the two cell lines. b) DW 
image example of the LS174T with the ROI in red. 

 Table 1. BIC of the best models with their number of parameters 

Fig.1 Synthesised data from the best model (lines) for LS, SW with the scan data 
(symbols). 
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