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TARGET AUDIENCE: Scientists working in the field of diffusion MRI.   
PURPOSE: Diffusion magnetic resonance imaging (dMRI) is widely used to quantify water diffusion in biological tissue. The accuracy of diffusion model-specific 
measures will be limited if not accounting for the statistical distribution of the magnitude dMRI data, which has typically low SNR. The prior knowledge of the 
underlying noise parameters thus allows more accurate dMRI analyses. Most of the existing noise estimation methods can be classified as methods that use background 
regions or the image object itself to estimate the noise parameter.  Background-based methods often fail due to the suppression of the background signal by the scanner, 
image artifacts (e.g. ghosting), or spatially varying noise. The object-based methods often rely on a Gaussian approximation of the noise, a sufficiently high spatial 
resolution such that a (non)local set of voxels with similar neighborhoods can be found to fit a noise distribution, repeated measurements, or  a spatially uniform 
distribution of the noise level. dMRI, however, suffers from a restricted spatial resolution and involuntary subject and/or brain motion causing misalignments between 

multiple measurements  to become more likely. In addition, the noise is generally 
spatially varying due to the use of parallel imaging techniques. We here propose a new 
strategy with low assumptions on the diffusion weighted (DW) data that allows for the 
voxelwise estimation of the noise level.  
METHODS:  Koay et al. showed that the noise level could be computed if the mean and 
standard deviation (SD) of the rice distributed variable is known or can be estimated [1]. 
In dMRI, the magnitude mean can be estimated by linearly fitting spherical splines to the 
data. Furthermore, 3D wavelet decomposition delves data into different spatio-frequency 
bands. The high frequency (HHH) sub-band is mainly composed of coefficients 
corresponding to the noise, and as such, the sub-band was previously used to estimate the 
magnitude SD using the MAD estimator [2]. The MAD estimator should, however, only 
be used if the magnitude noise properties are spatially or temporally invariant. If DW 
measurements are not repeatedly acquired, the condition is not fulfilled.  However, we 
avoid the need for repeated measurements by commuting the median operator and Koay’s 
iterative correction, which is monotonic. The accuracy of our noise map estimator was 
evaluated during a simulation experiment: We simulated accelerated (R=2) whole brain 
DW. Phantom images were derived from a diffusion atlas. In addition to 12 non-DW 
images, a single b-shell was sampled from the atlas: Jones60 directions at b = 2500 
s/mm2. Eight-channel k-space data was slice-by-slice calculated as the Fourier transform 
of each individual coil image, which is the noise-free DW image modulated by a 
normalized coil sensitivity map. Complex, Gaussian noise was added to the k-space data 
and all odd phase encoding k-space lines were suppressed before mSENSE 
reconstruction. For a real data experiment (12 repetitions of non DW images, 60 x b = 
1000 s/mm2, 60 x b = 2500 s/mm2, 12 repetitions of 1 x b = 3000 s/mm2) we had to define 
a heuristic reference map on the real data to evaluate our noise map estimation approach. 
As a bronze standard, we adopted the strategy proposed by Maximov et al. [3]. Their 
strategy relies on the acquisition of repeated measurements and can, thus, be applied on 
the b = 0 s/mm2 as well as on the b = 3000 s/mm2 DW images. Our method was 
subsequently applied on the b = 1000 s/mm2 and b = 2500 s/mm2 shell.   
RESULTS: Simulation experiment: The estimated noise maps were averaged over 50 

trials and shown in Fig 1. A slight positive bias can be observed. When using a b = 2500 s/mm2 shell for noise map estimation, the bias was 1.6% and 2.5% for 
SNR=16 and 8, respectively. Real data experiment: Our proposed method resulted in noise maps (Fig. 2) which correspond well with the bronze standard, both in terms 
of intensity and spatial distribution, especially, if we compare our results with the bronze standard – based on 12 repetitions – calculated from the b = 3000 s/mm2 

images. The noise map derived from the b = 0 s/mm2 images is clearly affected by pulsation artefacts. This is mainly reflected in an increased noise level in regions 
surrounding the CSF. Strong edges (i.e. high frequent image information) in the DW images will show-through in the HHH sub-band. The effect is less pronounced if 
low SNR images (e.g., with high b-values) are used for noise map estimation. 
 DISCUSSION/CONCLUSION: The development of a 
noise map estimation strategy is of utmost importance 
when aiming for more accurate dMRI analyses. For the 
real data experiments, the estimated noise map 
corresponds very well with the bronze standard, which 
was constructed with a recently proposed technique based 
on repeated measurements [3]. In a clinical setting, that 
approach, however, has two clear limitations: (a) the 
acquisition of repeated measurements (preferably with 
high b-value) will further lengthen the scan time, (b) 
misalignment between repeated measurements, which will 
cause the bronze standard to become erroneous, is much 
more likely to occur for a patient than for an instructed 
healthy volunteer. For noise map estimation, the highest b-
value shell is preferably used. In those images, the HHH 
sub-band is the least corrupted with residual signal, which 
originates in high image gradients. One might benefit from 
further suppressing the HHH sub-band’s residual signal. 
Coupé et al. already suggested to threshold the gradient magnitude of low frequency sub-band to create a mask for high gradient regions [2]. Importantly, the proposed 
noise map estimator relies on the assumption of an identical Gaussian noise map for all uncorrected DW images.  
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Fig. 1: In the left column, the reference noise maps were shown. The 
average noise maps using the proposed estimator based on the DW 

images with b = 2500 s/mm2 were shown in the  right column, 
respectively. Contrast was kept constant for visual comparison 

purposes. 

Fig. 2 Our proposed noise map estimator, applied to the b = 1000 mm2/s images  and b = 2500 
mm2/s images, was compared to a bronze standard, calculated from the b = 0 mm2/s 

repetitions or b = 3000mm2/s repetitions. 
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