
 
Fig. 4 ROI averages. 

 
Fig. 3 Parametric map of ε. 

 
Fig. 2 Microscopic anisotropy ε (blue circles) for spheroids with long semi-axes of 4 µm: IMA 
(red asterisk), and theoretical value (blue line). In (a), Δ = 120 ms and κ = 0; in (b), q = 0.3 µm-1 
and κ = 0; (c) Δ = 120 ms and q = 0.3 µm-1. 
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Introduction: Pulsed field gradient diffusion sequences (PFG) with two diffusion encoding blocks separated by a variable delay (mixing time) have been shown to have 
the ability to detect nonspherical pore shapes (“pore shape anisotropy” or “microscopic anisotropy”) in macroscopically isotropic samples1-5. One such approach is 
angular double PFG (d-PFG), where pore shape anisotropy manifests itself in a signal modulation as the angle θ between the two diffusion encoding directions is var-
ied. However, current approaches to quantifying compartment shape anisotropy using angular d-PFG are not rotationally invariant and are affected by pore orientation 
anisotropy when applied to macroscopically anisotropic systems5-7. Here we propose a new and rotationally invariant sampling scheme of d-PFG, allowing estimation of 
orientation distribution independent quantities. The sampling scheme is evaluated with numerical simulations and ex vivo experiments on a vervet monkey brain. 
Theory In angular d-PFG, the diffusion wave vector magnitude q of the 2 diffusion encoding blocks is kept equal, while their relative angle θ is varied. When the 
sample is isotropic and the mixing time sufficiently long, the modulation of the d-PFG signal Siso(q,θ) with θ is known to reflect microscopic anisotropy. In fact, the 
amplitude ε of the modulation is a measure of pore shape anisotropy, and it can be determined by forming the difference between the log signals of 
two diffusion measurements, one with parallel and one with perpendicular diffusion wave vectors: 4 iso isolog ( ,0) log ( , / 2)q S q S qε π= − . However, 
in anisotropic ensembles, this difference depends not only on pore shape anisotropy, but also on macroscopic anisotropy and absolute wave vector 
orientations. This dependency can be removed by averaging the signal 1 2( , )S q q over all possible orientations. Using the theory of exact quadrature 
on the rotation group8, we find that this average (Siso) can be determined exactly up to 6th order in q by sampling the d-PFG using only 60 rotations 
( R χ∈ ) of an arbitrary set 1 2ˆ ˆ( , )e e  of unit vectors with relative angle θ 
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For the case of perpendicular wave vectors θ =π/2, the directions of the first wave vector q1 correspond to the 12 vertices of the icosahedron (Fig. 
1a), while the 2nd wave vector q2 samples 5 equidistant points on the corresponding great circle (Fig. 1b), resulting in a total of 12 x 5 = 60 
directions. The directions of the 2nd wave vector associated with 2 anti-podal directions of the first diffusion wave vector make up 10 uniformly 
distributed directions on the great circle (Fig. 1b). For the case of parallel wave vectors, the directions are the 12 vertices of the icosahedron. 
Thus, a quantitative and rotationally invariant measure of pore shape anisotropy ε can be estimated from 72 pairs of directions 
by 
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Methods: Monte Carlo simulations of diffusion in spheroids were implemented in Matlab using 50,000 particles, D = 2 µm²/ms, and time step 1 μs. The spheroids had 
long semi-axes of 2, 4 or 8 µm and short semi-axis 1 µm. The orientations of the long axes of the cylinders were sampled from a Watson distribution, with concentration 
parameters κ ranging from 0 to 20 (uniform to highly concentrated distributions). Diffusion times ranged from 0 to 400 ms, mixing times was set to the maximum 
diffusion time in each case, and diffusion wave vector q from 0 to 5 µm-1. We compare ε to an analogous index of microscopic anisotropy, IMA, of pore shape 
anisotropy introduced in 5. A spin echo double PFG sequence was implemented on a Varian 4.7 T scanner, and images of a perfusion fixed vervet monkey brain 
prepared as in9 were acquired using Δ/δ = 11/3 ms, mixing time 15 ms, resolution 0.6 mm isotropic, and diffusion gradient G = 0.49T/m. Number of averages was 2 and 
total acquisition time was 46 hours. Two additional acquisitions were collected, one in which the set of diffusion directions were rotated in order to assess rotational 
invariance, and one with a lower diffusion gradient G = 0.346 T/m to address robustness. 
Results: Simulations from different Watson distributions demonstrated ε to be independent of macroscopic anisotropy, and to be relatively robust against variations in 
diffusion time (Fig. 2). In terms of the diffusion wave vector, there was a larger window of accuracy for ε than for IMA. In Fig. 3, a coronal slice of ε is shown – note 
that it is predominantly positive as it should be, and that it is generally larger in white matter. Finally, in Fig. 4 we show average ROI values for 6 distinct anatomical 
regions, corpus callosum (CC), corticospinal tract (CST), motor cortex (M1), somatosensory cortex (SOMAT), putamen (PUT) and caudate nucleus (CD). Note that ε is 
relatively robust against rotations, but change somewhat when lowering the diffusion weighting G. This latter effect is familiar from other microstructural diffusion 
indices10. Nevertheless, both rotations and variations in G preserve the relationships among the ROI averages. Figure 4 further demonstrates that microscopic anisotropy 
is larger in white matter than in gray matter 11, 12. Furthermore, it is larger in corpus callosum than in the corticospinal tract, and among the gray matter regions, motor 
cortex shows the highest microscopic anisotropy, and deep gray matter the lowest 13.  
Conclusions: We presented and evaluated a simple experimental procedure to obtain a precise and rotationally invariant determination of pore shape anisotropy in the 
presence of macroscopic anisotropy. The procedure involves the acquisitions of a set of only 72 pairs of diffusion directions. We obtained images of pore shape 
anisotropy in a fixed vervet brain, and values in different anatomical ROIs. 
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Fig. 1 Directions of the first wave vec-
tor (a), and associated orthogonal wave 
vectors (b), matched to the first (North 
and South pole) according to color. 
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